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ABSTRACT

This dissertation consists of three papers. Collectively they attempt to investigate

on how to better forecast a time series variable when there is uncertainty on the stability

of model parameters.

The first chapter applies the newly developed theory of optimal and robust weights

to forecasting the U.S. market equity premium in the presence of structural breaks.

The empirical results suggest that parameter instability cannot fully explain the weak

forecasting performance of most predictors used in related empirical research.

The second chapter introduces a two-stage forecast combination method to forecast-

ing the U.S. market equity premium out-of-sample. In the first stage, for each predictive

model, we combine its stable and break cases by using several model averaging methods.

Next, we pool all adjusted predictive models together by applying equal weights. The

empirical results suggest that this new method can potentially offer substantial predictive

gains relative to the simple one-stage overall equal weights method.

The third chapter extends model averaging theory under uncertainty regarding struc-

tural breaks to the out-of-sample forecast setting, and proposes new predictive model

weights based on the leave-one-out cross-validation criterion (CV), as CV is robust to

heteroscedasticity and can be applied generally. It provides Monte Carlo and empirical

evidence showing that CV weights outperform several competing methods.
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CHAPTER 1. FORECASTING EQUITY PREMIUM WITH

STRUCTURAL BREAKS

1.1 Introduction

Recent econometric advances and empirical evidence seem to suggest that the market

excess returns are predictable to some degree. Forty years ago this would have been

tantamount to an outright rejection of the efficient capital market hypothesis. In fact,

the martingale is long considered to be a necessary condition for an efficient asset market,

one in which the information contained in past prices is instantly, fully, and perpetually

reflected in the asset’s current price. If the market is efficient, then it should not be

possible to profit by trading on the information contained in the asset’s price history,

hence the conditional expectation of future price changes, conditional on the price history,

cannot be either positive or negative and therefore must be zero. A model associated

with the efficient market hypothesis is the random walk model. It assumes that the

successive returns are independent, and that the returns are identically distributed over

time. Consequently, it implies that the efficient market hypothesis and random walk

model combined can fully explain the weak forecasting performance of a wide range of

predictors in empirical studies.

However, one of the central tenets of modern financial economics is the necessity

of some degree of trade-off between risk and the expected excess returns. In addition,

although the martingale hypothesis places a restriction on the expected returns, it does

not account for risk in any way. Particularly, if an asset’s expected price change is
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positive, it may be the reward necessary to attract investors to hold the asset and to

bear the associated risk. Therefore, the martingale property may be neither a necessary

nor a sufficient condition for rationally determined asset prices. The complex structure

of security markets and frictions in the trading process could possibly generate stock

return predictability.

Recently, Goyal and Welch (2008) show that the simple historical average model of

the U.S. equity market excess returns forecasts future returns better than other models

with various predictors suggested by the literature. They argue that the poor out-of-

sample performance of linear predictive regressions is a systematic problem, not confined

to any decade. They compare predictive regressions with historical average returns and

find that historical average returns almost always generate superior return forecasts, so

they conclude that “the profession has yet to find some variable that has meaningful

and robust empirical equity premium forecasting power”. Subsequently, in examining

the cause of the forecast failure shown in Goyal and Welch (2008), Rapach et al. (2010)

argue that model uncertainty and parameter instability impair the forecasting ability.

Additionally, Rapach and Wohar (2006) and Paye and Timmermann (2006) have shown

empirical evidence of detected structural breaks in equity premium predicative models.

But the literature on how to forecast excess returns with detected structural breaks is

limited.

In this paper, we attempt to answer two empirical questions. First, if the true data

generating process underlying the predictive model indeed has structural breaks, how

to forecast excess returns? Second, can structural breaks or parameter instability fully

explain the poor out-of-sample performance of those variables evaluated in Goyal and

Welch (2008)? For the presence of parameter instability, using monthly data from Goyal

and Welch (2008) and the break testing procedure by Bai and Perron (1998), we find that

all models except for the one using the stock market variance, do not have significant

statistical evidence for breaks. Therefore, parameter instability alone cannot explain the
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puzzle of weak out-of-sample predictive power for most variables. Next, for the stock

market variance model with estimated breaks, we apply the optimal and robust weights

theory proposed by Pesaran et al. (2013) to forecasting the U.S. market equity premium

out-of-sample. Our empirical results suggest that the stock market variance does have

predictive power in forecasting excess returns. In addition, its predictive ability is present

even without assuming parameter instability for the linear predictive model. Our further

analysis shows that for the stock market variance, its break model outperforms the stable

one.

This paper builds on literature related to out-of-sample forecast evaluation and struc-

tural breaks. Researchers, such as Giacomini and Rossi (2009), have provided empirical

evidence and suggest that parameter instability or structural break is an important

source of forecast failure in macroeconomics and finance. Parameter instability can arise

as a result of changes in tastes, technology, institutional arrangements and government

policy. If there are breaks in the underlying data generating process and the break sizes

are large, predictive models without taking into account this fact tend to forecast poorly

out-of-sample. Researchers, such as Inoue and Kilian (2004), Goyal and Welch (2008)

and Giacomini and Rossi (2009), have documented this out-of-sample forecast breakdown

under parameter instability.

In the modeling of structural breaks, parameters can be assumed to change at discrete

time intervals or continuously. With the discrete break model, break dates are estimated

and forecasts are typically constructed using the post-break observations. Furthermore,

Pesaran and Timmermann (2007) have proposed the optimal window theory to forecast in

the presence of breaks. They argue that forecasts from the post-break window may not be

mean squared forecast error optimal, as the estimation error could be large due to small

post-break sample size. Their optimal estimation window includes pre-break observations

which involves a bias-variance trade-off. On the other hand, Pesaran et al. (2013) propose

optimal weights in the sense that the resulting forecasts minimize the expected mean
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squared forecast error. With known break sizes and dates, their optimal weights follow

a step function that allocates constant weights within regimes, but different weights

across regimes. Since in practice break dates and sizes are unknown and their estimation

could be highly imprecise, Pesaran et al. (2013) also develop weights that are robust to

the uncertainty surrounding the break dates and sizes. With the continuously varying

parameter model, breaks are assumed to occur at every time instant and observations

are down-weighted to take account of the slowly changing nature of the parameters, for

example, exponential smoothing.

The remainder of this paper is organized as follows. Section 1.2 reports the break

estimation results. Section 1.3 outlines the weighted least squares theory we use to

forecast out-of-sample with breaks. Section 1.4 reports empirical results. Section 1.5

concludes.

1.2 Detecting and Dating Structural Breaks

Goyal and Welch (2008) use the stable linear one-step ahead predictive model to

evaluate the predictive power of a wide range of variables,1

yt+1 = ȳ + βxt + ut+1 (1.1)

where t = 1, ..., T . yt+1 is the market excess returns, ȳ is the intercept, xt is the ex-

ogenous predictor available at time t to forecast the next period returns yt+1 and ut+1

is a disturbance term. The un-modeled structural breaks may be the cause why many

predictors are week to forecast the excess returns relative to the benchmark which is

simply

yt+1 = ȳ + ut+1. (1.2)

In this section we will present the break model and outline the method we will use to

detect and estimate possible breaks for model (1.1).

1They also consider a large linear model which includes all variables.
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1.2.1 Break Model

The model subject to m breaks occurring at times (t1, t2, ..., tm) is

yt+1 =



y1 + β1xt + ut+1, t = 1, ..., t1

y2 + β2xt + ut+1, t = t1 + 1, ..., t2
...

...

ym + βmxt + ut+1, t = tm−1 + 1, ..., tm

ym+1 + βm+1xt + ut+1, t = tm + 1, ..., T

(1.3)

where yt+1 is the one-step ahead market excess returns, xt is the exogenous predictor

available at time t to forecast the next period returns yt+1 and ut+1 is a disturbance

term. The reason for using the discrete, step-function type break model is that some

of the potential sources of breaks, such as shifts in economic policy regimes or large

macroeconomic shocks, are likely to lead to rather sudden shifts in the parameters of the

forecasting model. In addition, we assume that parameter instability only occurs in the

regression coefficients ȳ and β.

The idea of estimating structural breaks in Bai and Perron (1998) is to find a set

of dates which globally minimizes the sum of squared residuals from the least squares

regression

(t̂1, t̂2, ...t̂M) = argmin
m+1∑
i=1

ti∑
s=ti−1+1

[ys+1 − ȳs − βsxs]2 (1.4)

where i indexes the number of regimes. The regression parameter estimates are the

ordinary least squares estimates associated with the m-partition of the data sample.

For break identification, a crucial assumption in Bai and Perron (1998) is that there is

enough number of observations within each regime. Given the break date estimates, the

regression model coefficients,
{
β̂i

}m+1

i=1
, are the least squares estimates associated with

the partition comprised of the estimated break dates.
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1.2.2 Data

Our monthly data from January 1871 to December 2011 are obtained from Goyal

and Welch (2008). Since not all variables are available for the entire time span, in order

to take a comprehensive look at the performance of all predictors, we only consider a

subset of the data from May 1937 to December 2011 for our empirical analysis. It is

worth mentioning that in this paper we examine more predictive variables than those

studied in Paye and Timmermann (2006) and Rapach and Wohar (2006).

The dependent variable, the market equity premium, is the log returns on the S&P

500 index including dividends minus the log returns on the risk-free rate. The predictors

are

• Log dividend-price ratio (dp): log of a 12-month moving sum of dividends paid on

the S&P 500 index minus the log of stock prices.

• Log dividend yield (dy): log of a 12-month moving sum of dividends minus the log

of lagged prices.

• Log earnings-price ratio (ep): log of a 12-month moving sum of earnings on the

S&P 500 index minus the log of stock prices.

• Log dividend-payout ratio (de): log of a 12-month moving sum of dividends minus

the log of a 12-month moving sum of earnings.

• Stock market variance (svar): monthly sum of squared daily returns on the S&P

500 index.

• Cross sectional premium (csp): the relative valuations of high- and low-beta stocks.

• Book to market ratio (bm): ratio of book value to market value for the Dow Jones

Industrial Average.
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• Net equity expansion (ntis): ratio of a 12-month moving sum of net equity issues by

NYSE-listed stocks to the total end of year market capitalization of NYSE stocks.

• 3-month Treasury bill rate (tbl): interest rate on a three-month secondary market

Treasury bill.

• Long term government bond yield (lty): long term government bond yield.

• Term spread (tms): long term yield minus the Treasury bill rate.

• Default premium (dfy): difference between BAA- and AAA-rated corporate bond

yields.

• Inflation (infl): inflation is the Consumer Price Index (all urban consumers) from

the Bureau of Labor Statistics.

These variables can be put into three categories: stock characteristics variables, such

as the dividend price ratio; market micro-structure variables, such as the net equity

expansion; and macroeconomic indicators, for example, the inflation rate.

1.2.3 Break Estimation

Our model (1.3) assumes that all regression coefficients are subject to structural

breaks, since there is no convincing evidence saying otherwise. Because the total number

of breaks is another parameter to estimate, a predictive model with a large number

of estimated break dates fully based on equation (1.4) may be overfitted. To correct

possible model overfitting, we adopt the approach by Zeileis et al. (2003) to select the

number of estimated breaks based on the Bayesian information criterion which penalizes

overfitting. The number of breaks associated with the minimum Bayesian information

criterion (BIC) value will be selected. If the BIC value achieves its minimum at the point

where the total number of breaks is zero, then it favors a stable model with no breaks.
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The total number of breaks estimation results for all models are presented in Figure A.1,

Figure A.2 and Figure A.3.

We have 14 models in total, 13 univariate regression models plus one historical mean

model as benchmark. For each model labeled by its predictor, Figure A.1, Figure A.2 and

Figure A.3 report the BIC value and the sum of squared residuals (RSS) as a function of

the number of breaks. The RSS is shown in blue colored curve and it is downward-sloping

in all figures. This is not surprising because adding one more arbitrary break is analogous

to adding one more regressor in a linear model and the RSS will decrease as the result of

model overfitting. The black colored BIC curve is the criterion we use in break number

selection. By BIC, we can see that only the stock market variance model has evidence of

parameter instability with three breaks. But the evidence is not strong enough to rule

out the stable model shown in Figure A.1. Both models have approximately the same

BIC value, so next we will split the analysis of the stock market variance model into two

cases, the break model case and the stable model case. For other models, it is clear from

these figures that the stable model is the best choice.

For the break model of stock market variance, the break date estimates are March

1956, September 1974 and November 1985. Note that the second break date, September

1974, corresponds to the timing of the oil shock documented by economists.2 The last

break date may be related to the great moderation.

1.2.4 Full Sample Estimation Results

For all stable models, we simply estimate their parameters by least squares then

conduct inference. Separately, for the stock market variance model with breaks, based

on previous results, we estimate its parameters for each segment by least squares. Our full

sample least squares estimation results for all stable models are presented in Table A.1.

The full sample estimation results for the stock market variance model with breaks

2Goyal and Welch (2008) pick the year 1974 as the break date without estimation.
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are reported in Table A.2. In Table A.1, for each model labeled by its predictor, we

report its in-sample R2 statistic, intercept estimate and predictor coefficient estimate β.

Parentheses report the t statistic for each parameter estimate above. In Table A.2, we

report all statistics separately for each segment.

For all predictor-based stable models except for the stock market variance model, the

in-sample explanatory power of predictors measured by R2 is very low. Furthermore,

most predictor coefficients are insignificant. Our results contradict with studies, such

as Giacomini and Rossi (2009) and Goyal and Welch (2008), which conjecture that the

insignificant predictive ability of economic variables is likely due to parameter instability.

Our results show that most predictors in Goyal and Welch’s monthly data are stable in

the bivariate predictive model, and the poor forecasting performance of these variables

cannot be attributed to un-modeled parameter instability.

For the stock market variance model with three breaks, its R2 value is higher than

any other predictors shown in Table A.1 in all segments. Furthermore, its parameter

estimates are significant in all segments. Our results suggest that the stock market

variance has predictive power in forecasting excess returns.

Next we will show how to apply the optimal and robust weights to forecasting out-

of-sample with breaks.

1.3 Forecast with Parameter Instability

With mounting evidence of parameter instability in many macroeconomic and fi-

nancial predictive models (see Rapach and Wohar (2006) and Paye and Timmermann

(2006)), how to forecast a time series variable of interest with model parameter instabil-

ity is an important issue. Researchers have proposed various methods to forecast under

modeled breaks, and this strand of literature is fast evolving. Here we apply the weighed

least squares theory proposed by Pesaran et al. (2013) to forecast in the presence of
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breaks. In this section we will outline the construction of optimal weights and robust

weights, and examine their empirical performance next. From a forecaster’s perspective,

the latest break date should be most important to predict the future, so for models with

multiple estimated breaks, we only focus on forecasting after the latest break and drive

weights accordingly.

1.3.1 Methodology

1.3.1.1 Optimal Weights

The theory supporting the optimal weights assumes that the break dates and sizes

are known. Following the notation of related out-of-sample forecast literature, we denote

the total sample size T + 1, and split the sample into two parts: the first R observations

for the training sample while the remaining P observations for prediction and forecast

evaluation, R+P = T + 1. In addition, we impose that the break point, τ , falls into the

estimation sample, and is bounded far away from both ends, that is, 1 << τ << R. We

only consider the one-step ahead forecast problem. The predictive model with optimal

weights is

ŷt+1 = x′t+1β̂
opt
t (1.5)

The weights used in parameter estimation are optimal in the sense of minimizing the

expected mean squared forecast error

w = arg min
w

E

[(
yt+1 − x′t+1β̂t

)2
]

(1.6)

There are three popular estimation windows in the out-of-sample forecast literature:

recursive window, rolling window and fixed window. Under the recursive window, at

each point in time, the estimated parameters are updated by adding one more obser-

vation starting with sample size R. Under the rolling window, the estimation window
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is always fixed at length of R, for example, the first estimate uses data from period 1

to period R, while the second estimate runs from period 2 to period R + 1. Under the

fixed window, parameters are estimated only once using the entire estimation sample R.

Mathematically, for the recursive window

β̂optt =

(
t∑

s=1

wsxsx
′
s

)−1( t∑
s=1

wsxsys

)
(1.7)

for the rolling window

β̂optt =

(
t∑

s=t−R+1

wsxsx
′
s

)−1( t∑
s=t−R+1

wsxsys

)
(1.8)

and for the fixed window

β̂opt =

(
R∑
s=1

wsxsx
′
s

)−1( R∑
s=1

wsxsys

)
(1.9)

where t = R, ..., R + P − 1.

The optimal weights theory states that observations in each regime will receive differ-

ent weights for parameter estimation. If there is only one break, then the optimal weights

take a simple two-regime form under fixed window, distinct weights across regimes but

constant within each regime

 w1 = 1
R

1
µ+(1−µ)(1+µRλ2ω2)

w2 = 1
R

1+µRλ2ω2

µ+(1−µ)(1+µRλ2ω2)

(1.10)

where τ is the break date, µ = τ/R, λ = β1−β2
σ

, ω = 1
τ

∑τ
s=1 x

2
s. Optimal weights

under recursive window or rolling window take the same form except that we need to

update R with the actual sample size in each estimation step. Since we do not know the

population value of these parameters, in practice we need to take advantage of our break
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detection results earlier to provide sample approximations for the population parameter

values of β1, β2 and σ. Our ordinary least squares estimates for the βs in the third and

fourth segments in table A.2 will serve as proxies for β1 and β2. The sample standard

deviation from September 1974 to December 2011 will be used to approximate σ.

1.3.1.2 Robust Weights

For optimal weights we have assumed that the dates and the sizes of parameter breaks

are known. However, this assumption may not be relevant to real time forecasting.

Specifically, the break sizes are difficult to estimate unless a relatively large number of

post-break observations is available. So in addition to optimal weights, Pesaran et al.

(2013) also propose weights which are robust to the uncertainty of break dates and sizes.

In the robust weights theory, break dates and sizes are unknown.

The derivation of robust weights is an extension to deriving optimal weights. To

illustrate the main idea of robust weights, we will continue the derivation process from

equation (1.10). Rewrite equation (1.10) as

 Rw1 = 1
µ+(1−µ)(1+µRλ2ω2)

Rw2 = 1+µRλ2ω2

µ+(1−µ)(1+µRλ2ω2)

(1.11)

We can reformulate the time profile of the weights as

Rwt
(
µ, λ2

)
= w2 + (w1 − w2) I[τ−t] (1.12)

for t = 1, 2, ..., R. Hence,

Rw
(
a, µ, λ2

)
=

1
R

+ µλ2

1
R

+ µ(1− µ)λ2
−
(

µλ2

1
R

+ µ(1− µ)λ2

)
I[µ−a] (1.13)

where a = t/R ∈ [0, 1].
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There is one discrete break in βi, but now we do not know the exact date of the

break, τ . Instead, to derive the robust weights, we can impose a uniform distribution

assumption on the break fraction, µ ≡ τ/R ∼ U
[
µ, µ

]
, where µ and µ are some pre-

specified lower and upper bounds for the break fraction. µ could take the value of zero

while µ can be very close to one. By minimizing the expected mean squared forecast

error, the population robust weights can be solved as

Rw(a) =


0 +O(R−1) for a < µ(
µ− µ

)−1 ∫ µ
µ

1
1−µdµ−

(
µ− µ

)−1 ∫ µ
a

1
1−µdµ+O(R−1) for µ ≤ a ≤ µ(

µ− µ
)−1 ∫ µ

µ
1

1−µdµ+O(R−1) for a > µ

(1.14)

then approximated by

w(a) ≈


0 for a < µ

−1

R(µ−µ)
log
(

1−a
1−µ

)
for µ ≤ a ≤ µ

−1

R(µ−µ)
log
(

1−µ
1−µ

)
for a > µ

(1.15)

In the case where µ and µ are close to the end points of 0 and 1, we have

w(a) ≈ − log(1− a)

R
, a ∈ [0, µ] (1.16)

A discrete time version can be obtained by setting Rµ = R− 1. Namely,

w∗t =
− log(1− t/R)

R− 1
, for t = 1, 2, ..., R− 1 (1.17)

and

w∗R =
−1

R− 1
log

(
1− R− 1

R

)
=

log(R)

R− 1
(1.18)
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Due to approximation error, these weights do not sum to unity, so they need to be

re-scaled as

wt =
w∗t∑R
i=1 w

∗
i

, for t = 1, 2, ..., R (1.19)

So under fixed window, the sample robust weights take the following form

wt =


log(1−s/R)∑R−1

i=1 log(1−i/R)−log(R)
, s = 1, ..., R− 1

log(R)

log(R)−
∑R−1

i=1 log(1−i/R)
, s = R

(1.20)

Robust weights under recursive window or rolling window take the same form as in

equation (1.20) except that we need to update R with the actual sample size used in

each estimation step. With robust weights, the least squares parameter estimates under

the fixed window are:

β̂R =

(
R∑
s=1

wsxsx
′
s

)−1( R∑
s=1

wsxsys

)
(1.21)

under the rolling window

β̂Rt =

(
t∑

s=t−R+1

wsxsx
′
s

)−1( t∑
s=t−R+1

wsxsys

)
(1.22)

and under the recursive window

β̂Rt =

(
t∑

s=1

wsxsx
′
s

)−1( t∑
s=1

wsxsys

)
(1.23)

where t = R, ..., T .

Note that the robust weights shown in equation (1.20) do not involve break dates and

sizes. Comparing robust weights with optimal weights, we can see that robust weights
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take different values for different observations, as opposed to constant weights within

a structural regime under optimal weights. In our empirical applications, the robust

weights are monotonically increasing as time runs toward the end of the sample: the

most recent observation receives the highest weight while observations in the distant

past receive smaller weights. An example is shown in Figure A.11.

1.4 Out-of-sample Forecast

In the empirical analysis, we reserve the last 36 observations from the monthly data

as the evaluation sample, P = 36. Theses observations represent the last three years of

monthly data from January 2009 to December 2011. For the break model of stock market

variance (1.3), the training sample starts with the first observation after the second

break date (August 1974) and ends with the observation right before the evaluation

sample (December 2008). The justification for our training sample size choice is that

the econometric theory for forecasting with more than one break in the coefficient is not

fully developed. Furthermore, from a researcher’s perspective in empirical analysis, the

latest break matters the most. Overall, we have R = 859 and P = 36 for the stable

model of the stock market variance in equation (1.1), while R = 412 and P = 36 for

the structural break model of the stock market variance (1.3). We use the mean squared

forecast error (MSFE) to evaluate forecasts and compare results.

1.4.1 Forecast Using the Stable Model of Stock Market Variance

We first examine the out-of-sample performance of model (1.1) for the stock market

variance without assuming structural breaks. We use model (1.1) to forecast the last 36

months of the equity premium using all window choices. In addition, we also include

forecasts from the historical mean benchmark model (1.2). The results are shown in

Figure A.4.
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Figure A.4 shows that almost all estimation windows perform at least as well as the

benchmark measured by a series of test errors, which supports our in-sample estimation

results that the predictive power of stock market variance is significant. It is worth

mentioning that forecasting results using annual data in Goyal and Welch (2008) suggest

that the regression coefficient for the stock market variance predictor is insignificant, but

our results using monthly data state otherwise. This could be due to the fact that we

have more observations for parameter estimation using monthly data.

1.4.2 Forecast Using the Break Model of Stock Market Variance

Previously we have shown the forecasting performance of the stable model (1.1).

Here we switch to the break model (1.3) and apply the optimal and robust weights to

forecasting out-of-sample. In addition, we also consider the post-break window method

which only uses observations after the latest break to estimate parameters.

In practice, it is up to the researcher to decide which method to use among optimal

weights, robust weights and post-break window. Robust weights involve using observa-

tions even before the break date to estimate parameters so it may introduce estimation

bias. The post-break window only uses observations after the recent break so it may

help reduce estimation bias, but if the post-break window size is small, it may result in

a large efficiency loss. Optimal weights assume that the true break dates and sizes are

known, but in practice it is almost impossible to estimate them with great precision,

especially when either the sample size or the break size is small.

1.4.2.1 Fixed Window

Out-of-sample results for the stock market variance model under fixed window are

shown in Figure A.5.

We can see that the stock market variance model performs at least as well as the

benchmark over the evaluation sample period measured by a series of test errors. The
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robust weights perform especially well towards the end of the evaluation sample period.

Comparing weighting methods, our results suggest that the post-break window could be

used as an alternative to robust weights if the computation of robust weights is costly.

1.4.2.2 Recursive Window

Out-of-sample forecasting results for the stock market variance model under recursive

window are shown in Figure A.6.

In this case we see that the robust weights and the post-break window work well

over most part of the evaluation sample period. For most forecasts, the efficiency gains

are relatively large under either robust weights or post-break window compared with the

historical mean model.

1.4.2.3 Rolling Window

Out-of-sample results for the stock market variance model under rolling window are

shown in Figure A.7.

Results in this case are similar to those under fixed window. Robust weights forecast

better than others at the beginning and towards the end of the sample. Post-break

window does well during the middle of the evaluation period.

1.4.3 Comparing the Stable Model with the Break Model

Previously we have shown that the stock market variance has predictive power in

forecasting excess returns based on Goyal and Welch’s monthly data, and the predictive

ability stays regardless of the presence of structural breaks. Since our break detection

results presented in section 1.2.3 do not provide a clear guidance on which model to

choose, the break model (1.3) or the stable model (1.1) for the stock market variance,

a natural extension is to compare the out-of-sample performance between these two

models.
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Following Goyal and Welch (2008), to construct a graphical device to evaluate the

out-of-sample forecasting performance for two competing models, we will create a time

series plot of the mean squared forecast error (MSFE) difference between the stable and

break model,

∆MSFE = MSFEstable −MSFEbreak (1.24)

We will consider all estimation window choices, namely, recursive window, rolling

window and the fixed window. In addition, since we have three weighting choices for

the break model, totally we have nine MSFE difference time series plots. These MSFE

difference plots are presented in Figure A.8, Figure A.9 and Figure A.10. In each plot, if

the curve moves up, it implies that the break model outperforms the stable model during

that evaluation period. If the curve moves down, it supports the stable model during

that period.

A number of fluctuations can be seen under the recursive window in Figure A.8. All

weighting methods show strong support for the break model at the end of the sample,

and the MSFE difference curve remains positive for most part of the evaluation period.

Rolling window favors the stable model as shown in Figure A.9. Both optimal weights

and robust weights support the stable model at the beginning of the series, and the

MSFE difference remains negative for most part of the evaluation period. The post-

break window curve is very flat, and it stays close to zero through the entire evaluation

period.

For the fixed window shown in Figure A.10, we can see that the robust weights

show strong support for the break model at the beginning and towards the end of the

evaluation period. Optimal weights and post-break window are flat with the difference

remaining positive for most part of the evaluation period.
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1.5 Conclusion

Goyal and Welch (2008) have examined the out-of-sample performance of a wide range

of predictors suggested by the empirical finance literature in forecasting excess returns

using stable linear models. They conclude that most predictors have weak predictive

ability. Furthermore, researchers argue that the cause of the failure for these predictors

is parameter instability and have provided empirical evidence, see Paye and Timmermann

(2006) and Rapach and Wohar (2006). Then the problem is how to forecast out-of-sample

with modeled breaks, and how to evaluate forecasts and compare models.

This paper applies the newly developed theory of optimal and robust weights to

forecasting the U.S. market equity premium in the presence of structural breaks using

Goyal and Welch’s data. The weights are optimal in the sense of minimizing the expected

mean squared forecast error, or robust to the break dates and size estimation error.

Our empirical results suggest that parameter instability cannot fully explain the weak

forecasting performance of most predictors considered in Goyal and Welch (2008). We

find that out of 13 predictors, only one variable, the stock market variance, has evidence

of structural breaks. But the evidence is not strong to rule out the stable model. Our

empirical results suggest that the stock market variance has predictive power for market

equity premium regardless of the presence of modeled breaks. Comparing the break

model with the stable one, our results favor the former in forecasting excess returns.
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CHAPTER 2. COMBINING MULTIPLE PREDICTIVE

MODELS WITH POSSIBLE STRUCTURAL BREAKS

2.1 Introduction

Forecast combination is receiving growing attention in econometrics and finance.

Combining predictive models is a smoothed extension of model selection, and may pos-

sibly substantially reduce risk relative to model selection. While a broad consensus is

that forecast combination improves forecast accuracy, there is no consensus on how to

construct the forecast weights. Particularly, researchers have recognized the usefulness

of forecast combination in the presence of model parameter instability, and structural

breaks are often mentioned as motivation for combining predictive models. The under-

lying idea is that models may differ in how they adapt to changes. Thus, when breaks

are small, predictive models with stable parameters may outperform models with time-

varying parameters. The converse is true in the presence of large breaks happened in the

distant past. Since estimating the break dates and sizes precisely is difficult in real time,

it is possible that combining forecasts from models with different degrees of adaptability

can offer significant gains relative to selecting a single best model. Recent literature on

economic forecasting1 has focused on two particularly appealing methods, equal weights

and Bayesian averaging. The equal weights method selects a set of models and then

assigns them all equal weight for all forecasts. The Bayesian averaging method produces

weights as by-product of Bayesian model averaging. In addition to the aforementioned

1See Timmermann (2006) and Rossi (2013).
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weights, Hansen (2007) proposes Mallows’ model averaging, and has extended the theory

to various settings in subsequent research.2

In the literature on forecasting the market equity premium, Rapach et al. (2010) and

Rapach and Zhou (2013) show that forecast combination can deliver statistically and

economically significant out-of-sample gains relative to the historical average returns

consistently over time. They argue that model uncertainty and instability seriously

impair the predictability of individual model and the empirical explanations for the

benefits of forecast combination are that combining forecasts can take advantage of all

available information and combining forecasts are linked to the real economy. In their

empirical analysis, they report that forecast combination can solve the puzzle presented

in Goyal and Welch (2008) that many economic variables have week or no predictive

power to forecast the U.S. market excess returns based on linear models. Specifically,

Rapach et al. (2010) and Rapach and Zhou (2013) apply combination methods such as

equal weights and discounted mean squared forecast error weights to demonstrating its

superior out-of-sample performance relative to the historical mean benchmark. But it

is not clear in their analysis how the equal weights and the discounted mean squared

forecast error weights are related to structural breaks.

This paper introduces a two-stage forecast combination method which explicitly deals

with structural breaks. In the first stage, to take into account the uncertainty on param-

eter instability for each predictive model, we combine its stable and break cases by using

one of the four proposed methods, namely, equal weights, discounted mean squared fore-

cast error weights, Schwarz information criterion weights weights and Mallows’ weights.

Next, we pool all adjusted predictive models obtained from the first stage together by

applying equal weights. We recommend using the Mallows’ weights in the first stage

because it is theoretically justified by Hansen (2009).3

2See Hansen (2008), Hansen (2009) and Hansen and Racine (2011)
3In our empirical analysis, Mallows’ weights work the best among all four methods in forecasting

excess returns using Goyal and Welch’s updated data.
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To evaluate our two-stage forecast combination method and to compare results with

related literature, we apply the two-stage forecast combination method to forecasting

the U.S. market equity premium out-of-sample using an updated comprehensive dataset

from Goyal and Welch (2008), and compare our results with those from Rapach et al.

(2010) and Rapach and Zhou (2013) in similar studies. It is worth mentioning that in

this paper we use all frequencies of data available to thoroughly investigate the empir-

ical performance for all combination methods.4 Our empirical results suggest that the

two-stage forecast combination method, especially the one based on Mallows’ weights,

can potentially offer substantial forecasting gains relative to a simple one-stage equal

weighting method used in Rapach et al. (2010) and Rapach and Zhou (2013) over the

same dataset.5

This paper builds on an extensive literature on forecast combination and market

equity premium prediction. Timmermann (2006) provides a comprehensive survey on

forecast combination by analyzing theoretically the factors that determine the advantages

from combining forecasts, and discussing several cases related to model misspecification,

parameter instability and the role of combinations under asymmetric loss. Hansen (2008)

proposes forecast combination based on the Mallows’ information criterion which is an

asymptotically unbiased estimate of both the in-sample mean squared error and the out-

of-sample one-step ahead mean squared forecast error. Clark and McCracken (2010)

examines the effectiveness of combining various models of instability in improving VAR

forecasts made with real-time data, and considers a wide range of forecast combination

methods in their analysis. Elliott (2011a) examines the sizes of the theoretical gains to

optimal combination and provides conditions under which averaging and optimal com-

bination are equivalent. Cheng and Hansen (2013) consider forecast combination with

factor-augmented regression and investigate forecast combination across models using

4Rapach et al. (2010) uses quarterly data only. Rapach and Zhou (2013) uses monthly data only.
5Rapach et al. (2010) and Rapach and Zhou (2013) also consider other methods, such as median

weighting, trimmed mean weighting and discounted mean squared forecast error weights with different
values of the discount factor, the simple one-step overall equal weights perform the best.
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weights that minimize the Mallows’ and the leave-h-out cross validation criteria. Ra-

pach and Wohar (2006) examine the structural stability of predictive regression models

of the U.S. quarterly aggregate real stock returns over the postwar era. They find strong

evidence of structural breaks in several bivariate predictive regression models of S&P 500

returns. Goyal and Welch (2008) systematically investigates the in-sample and out-of-

sample performance of linear regressions that predict the equity premium with prominent

variables suggested by the academic literature. Campbell and Thompson (2008) show

that many predictive regressions of equity premium using other financial predictors can

beat the historical market average return once some restrictions are imposed on the signs

of model parameters and return forecasts. Rapach et al. (2010) recommend combining

individual forecasts to predict market equity premium and show that forecast combina-

tion offers statistically and economically significant out-of-sample gains relative to the

historical average market returns consistently over time. Rapach and Zhou (2013) survey

the literature on equity premium forecasting and show strategies, such as economically

motivated model restrictions, forecast combination, diffusion indices and regime switch-

ing models, can improve forecasting performance by addressing the substantial model

uncertainty and parameter instability.

The remainder of this paper is organized as follows. Section 2.2 presents the econo-

metric models, estimation method, out-of-sample forecast procedure and forecast com-

bination methods. Section 2.3 presents the data and our empirical results. Section 2.4

concludes.
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2.2 Econometric Model

2.2.1 Bivariate Predictive Model

Following Goyal and Welch (2008) and Rapach et al. (2010), we first consider the

stable one-step ahead bivariate predictive model:

rt+1 = βi0 + βi1Xi,t + et (2.1)

where rt+1 is the one period ahead market equity premium, Xi,t is predictor i avail-

able at time t to forecast the next period excess returns and et is a disturbance term.

We generate a series of out-of-sample forecasts of the market equity premium using a

recursive estimation window. Specifically, we split the total sample of T observations

into two parts, an estimation sample of size R and an evaluation sample of size P , where

R+P = T . Under the recursive window, at each point in time, the estimated parameters

are updated by adding one more observation starting with sample size R. For example,

the first out-of-sample forecast of the market equity premium based on predictor xi,t is

r̂i, R+1 = β̂i0, R + β̂i1, RXi, R (2.2)

where β̂i0, R and β̂i1, R are the ordinary least squares estimates of βi0 and βi1, respectively,

in equation (2.1) using the first R observations in the sample. Then, the second period

out-of-sample forecast is

r̂i, R+2 = β̂i0, R+1 + β̂i1, R+1Xi, R+1 (2.3)

where β̂i0, R+1 and β̂i1, R+1 are the least squares estimates of βi0 and βi1 using the first R+1

observations. Proceeding in this manner through the end of the out-of-sample period T ,

we have recursively produced a sequence of out-of-sample forecasts of size P , {r̂s+1}Ps=1,

using predictor xi,t. Using predictive model (2.1), we can apply the same procedure to

the rest of predictors, xi,t, where i = 1, ...,M . Since we have 14 predictors available to
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forecast excess returns across all data frequencies in our empirical applications presented

in section 2.3, M = 14.

In additional to the bivariate predictive model (2.1) using various predictors to fore-

cast the market equity premium, we can simply use the historical mean of the excess

returns for prediction

rt+1 = βi0 + et. (2.4)

We apply the same out-of-sample procedure outlined previously to generate a sequence

of forecasts of size P according to model (2.4), we label this series {r̄s+1}Ps=1. In the liter-

ature of examining the efficient capital market hypothesis and forecasting stock returns,

the historical mean model (2.4) serves as a natural benchmark predictive model to com-

pare with other proposed complex models, see Goyal and Welch (2008), Campbell and

Thompson (2008) and Rapach et al. (2010). To compare results with related literature,

we continue to use model (2.4) as benchmark in this paper.

2.2.2 Forecast Combination

Since there is no prior information implying that model (2.1) is the true model or

the best linear predictor, given that researchers have documented evidence of parameter

instability or structural breaks in linear models forecasting stock returns,6 a natural

competing alternative to model (2.1) is a model with breaks in its coefficients

rt+1 = βi0,t + βi1,tXi,t + et. (2.5)

Because of sample size concerns and the uncertainty surrounding the quality of the

estimates of structural break dates and sizes, we only consider the one break model in

this paper,

rt+1 =


βi0,1 + βi1,1Xi,t + et if t < τ

βi0,2 + βi1,2Xi,t + et if t ≥ τ

(2.6)

6See Rapach and Wohar (2006) and Paye and Timmermann (2006)
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where τ is the time index of the break. The break date τ is restricted to the interval [τ1, τ2]

which is bounded away from the ends of the sample on both sides, 1 < τ1 < τ2 < R.

Following related literature,7 we restrict that the break date falls into the middle 70%

portion of the estimation sample.

The break date can be estimated by concentration. That is, for a fixed value of τ ,

we can estimate the piece-wise model parameters by least squares and then calculate the

sum of squared errors, SSE(τ) = êt(τ). We apply this procedure to all possible values

of τ in the interval [τ1, τ2], so we have a series of values of the sum of squared errors,

{SSEs(τ)}τ2s=τ1 . Our estimate of the break date, τ̂ , would be the value of τ that is the

global minimizer of {SSEs(τ)}τ2s=τ1 .

For a given bivariate predictive model with predictor Xi, we can choose a stable

version of model (2.1) or a break version of model (2.6). Next, we are going to present

several forecast combination methods to combine model (2.1) and model (2.6) to form

a averaged model with predictor Xi. We assign weight w to the break model (2.6) and

1− w to the stable model (2.1), where w ∈ [0, 1], so the averaged model, MODi, is

rt+1 = w
{
βi0,t + βi1,tXi,t

}
+ (1− w)

{
βi0 + βi1Xi,t

}
+ et. (2.7)

2.2.2.1 Equal Weights

We can equally weight all models without estimating or calculating any additional

parameters, so the averaged model (2.7), MODe
i , is

rt+1 =
1

2

{
βi0,t + βi1,tXi,t

}
+

1

2

{
βi0 + βi1Xi,t

}
+ et. (2.8)

2.2.2.2 Discounted Mean Squared Forecast Error Weights

Stock and Watson (2003) propose a discounted mean squared forecast error (DMSFE)

combination method that computes weights based on the past predictive performance of

7See Andrews (1993) and Hansen (2009).
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individual models over a holdout out-of-sample period. That is, for model j at time t,

wdj,t =
φ−1
j,t∑M

s=1 φ
−1
s,t

(2.9)

where

φj,t =
t∑
l=1

θt−l(rl+1 − r̂l+1)2 (2.10)

and θ is a discount factor. The DSMFE method assigns greater weight to individual

predictive model with lower past mean squared forecast error (MSFE) over the holdout

out-of-sample period. When θ = 1, there is no discounting, so all past observations

are treated equally when calculating MSFE over the holdout period. If θ < 1, DMSFE

allows for greater weights on the more recent observations. The averaged model (2.7),

MODd
i , is

rt+1 = wdi,t
{
βi0,t + βi1,tXi,t

}
+ (1− wdi,t)

{
βi0 + βi1Xi,t

}
+ et. (2.11)

2.2.2.3 Schwarz Information Criterion Weights

The Schwarz information criterion weight8 for each predictive model is calculated

based on the associated value of the Schwarz information criterion (SIC). For example,

at time t, if the the SIC value for the break model (2.6) is SICb(t) and the SIC value for

the stable model (2.1) is SICs(t), then the SIC weight for the break model, wst , is

wst =
exp (SICb(t))

exp (SICb(t)) + exp (SICs(t))
. (2.12)

The averaged model (2.7), MODd
i , is:

rt+1 = wsi,t
{
βi0,t + βi1,tXi,t

}
+ (1− wsi,t)

{
βi0 + βi1Xi,t

}
+ et. (2.13)

2.2.2.4 Mallows’ Weights

Hansen (2007) proposes an averaging estimator with the weight selected to minimize

a Mallows’ information criterion, which is an asymptotically unbiased estimate of both

8See Timmermann (2006) and Rossi (2013).
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the in-sample mean squared error and the out-of-sample one-step ahead mean squared

forecast error. Subsequently, Hansen (2009) extends Mallows’ model averaging to the

structural break case. Specifically, at time period t, the Mallows’ weight for the break

model (2.6), wmt , is

wmt =


0 if Ft < p̄

1− p̄
Ft

if Ft ≥ p̄

(2.14)

where Ft is the standard F-test statistic in Andrews (1993), and p̄ is a penalty coefficient

whose value depends on the asymptotic distribution of the Andrews’ SupF test statistic.

Hansen (2009) provides a table of p̄ values for various cases.

The averaged model (2.7), MODm
i , is

rt+1 = wmi,t
{
βi0,t + βi1,tXi,t

}
+ (1− wmi,t)

{
βi0 + βi1Xi,t

}
+ et. (2.15)

2.2.2.5 Combining All Predictive Models

Since the seminal work of Bates and Granger (1969), it has been known that combin-

ing forecasts across predictive models can produce forecasts that outperform any single

individual model. Forecast combination can be viewed as a diversification strategy anal-

ogous to portfolio diversification that improves forecasting performance.

For our bivariate predictive model (2.1), since totally we have M predictors available,

there are M candidate models to forecast the market equity premium. Once we include

break model (2.6), we end up with 2M predictive models. Previously we have shown

several methods to average the stable and break version of a predictive model with

predictor Xi, next, we are going to combine all 2M models to form one pooled model.

Specifically, for each bivariate model i with predictor Xi, first, we combine its stable

and break cases using the four previously outlined combination methods to get MODj
i ,

i = 1, ...,M and j ∈ {e, d, s,m}. So for a given weighting method j, at this point we

have M models left from the initial 2M models.
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Next, we will assign equal weight to all M models for a given method j, that is,

1
M

∑M
i=1 MODj

i . This will be our final combined model to forecast,

rt+1 =
1

M

M∑
i=1

{
wji,t

[
βi0,t + βi1,tXi,t

]
+ (1− wji,t)

[
βi0 + βi1Xi,t

]}
+ et (2.16)

where j ∈ {e, d, s,m}.9

Intuitively, we have introduced a two-stage weighting procedure. In the first stage,

for each predictive model i, we combine its stable and break cases by using one of the four

outlined methods, namely, equal weights, DMSFE weights, SIC weights and Mallows’

weights. Then, we pool all models together by equal weights.

Note that in the second stage we only consider equal weights to pool all models which

have been averaged for parameter instability in the first round. The reason is that in

many empirical applications, combining a large number of predictive models by equal

weights tend to outperform other complex methods. But at the first stage regarding

model parameter instability, complex averaging methods may offer substantial gains.

2.2.3 Forecast Evaluation

A popular metric to evaluate forecasts is the mean squared forecast error (MSFE)

MSFE =
1

T

T∑
t=1

(yt − ŷt)2 . (2.17)

Since in this paper we compare forecasting performance of various predictors and

combination methods with the historical mean benchmark, and to compare our results

with those from related literature, we adopt Campbell and Thompson’s out-of-sample

R2
OS statistic to compare methods and models,

R2
OS(i) = 100×

(
1− MSFEi

MSFE0

)
(2.18)

where i indexes the model or method and 0 represents the benchmark. The R2
OS statistic

measures the reduction in MSFE for the predictive model or combination forecast relative

9e: equal weights. d: DMSFE weights. s: SIC weights. m: Mallows’ weights.
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to the historical average model. Thus, if the R2
OS statistic is positive, it indicates better

forecasting performance for model i than the benchmark model. The higher the R2
OS

value, the better the out-of-sample performance.

In addition, following Goyal and Welch (2008) and Rapach and Zhou (2013), to con-

struct a series of graphical device to evaluate the out-of-sample forecasting performance

for the benchmark and the competing models, we adopt the cumulative difference in

squared forecast errors (CDSFE) between the historical mean model and the bivariate

model or the combined model as another metric,

CDSFEt =
t∑

s=1

(rs+1 − r̄s+1)2 −
t∑

s=1

(rs+1 − r̂s+1)2 (2.19)

where r̄s+1 is the forecast from the benchmark model (2.4) and r̂s+1 is the forecast from

model (2.1) or model (2.16). At any period t, if the value of CDSFEt is positive, it implies

that the competing model outperforms the benchmark by having a smaller prediction

error rate.

Time series plots of the CDSFE curve can be conveniently used to determine if the

competing model has a lower MSFE than the historical average benchmark for any

period by simply comparing the height of the curve at the beginning and end points of

the segment corresponding to the period of evaluation. If the curve is higher at the end of

the evaluation period relative to the starting time, then the competing model or method

has a lower MSFE than the benchmark during the out-of-sample evaluation period. A

model or method which forecasts better than the historical average model will thus have

a slope that is positive everywhere during the out-of-sample evaluation period.

2.3 Empirical Results

2.3.1 Data and Out-of-sample Forecast

Our data are from Goyal and Welch (2008). We use the most recently updated data

up to the year of 2013. The market equity premium is the log returns on the S&P 500
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index including dividends minus the log returns on the risk-free rate. Since we apply

forecast combination methods to data of all frequencies, we only keep the following

fourteen variables which are available for all data frequencies:

• Log dividend-price ratio (dp): log of a 12-month moving sum of dividends paid on

the S&P 500 index minus the log of stock prices.

• Log dividend yield (dy): log of a 12-month moving sum of dividends minus the log

of lagged prices.

• Log earnings-price ratio (ep): log of a 12-month moving sum of earnings on the

S&P 500 index minus the log of stock prices.

• Log dividend-payout ratio (de): log of a 12-month moving sum of dividends minus

the log of a 12-month moving sum of earnings.

• Stock market variance (svar): monthly sum of squared daily returns on the S&P

500 index.

• Book to market ratio (bm): ratio of book value to market value for the Dow Jones

Industrial Average.

• Net equity expansion (ntis): ratio of a 12-month moving sum of net equity issues by

NYSE-listed stocks to the total end of year market capitalization of NYSE stocks.

• Treasury bill rate (tbl): interest rate on a three-month secondary market Treasury

bill.

• Long term yield (lty): long term government bond yield.

• Long term return (ltr): return on long term government bonds.

• Term spread (tms): long term yield minus the Treasury bill rate.
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• Default yield spread (dfy): difference between BAA- and AAA-rated corporate

bond yields.

• Default return spread (dfr): long term corporate bond returns minus the long term

government bond returns.

• Inflation (infl): inflation is the Consumer Price Index (all urban consumers) from

the Bureau of Labor Statistics.

As for the sample split choices, to make our results comparable to those of Goyal and

Welch (2008), Rapach et al. (2010) and Rapach and Zhou (2013), we adopt the following

choices:

• Monthly data: the estimation sample runs from 1927:01 to 1956:12 (R = 360), and

the evaluation sample runs from 1957:01 to 2013:12 (P = 684).

• Quarterly data: the estimation sample runs from 1947:1 to 1964:4 (R = 72), and

the evaluation sample runs from 1965:1 to 2013:4 (P = 196).

• Yearly data: the estimation sample runs from 1927 to 1964 (R = 38), and the

evaluation sample runs from 1965 to 2013 (P = 49).

We use the recursive window to forecast out-of-sample, meaning that the estimation

sample always starts from the same beginning period and additional observations are used

as they become available. Following this procedure, all model parameters are estimated

recursively and out-of-sample forecasts are generated accordingly.10

The time series plots of monthly, quarterly and yearly data are presented in Fig-

ure B.1, Figure B.2 and Figure B.3, respectively. Additionally, we also present the corre-

lation matrices for all variables across all data frequencies in Figure B.4, Figure B.5 and

10Model parameters can also be estimated using a rolling window, which drops earlier observations as
additional data become available. Rolling window may be justified by appealing to structural breaks,
but our results shown in this paper do not change substantially if we switch to use the rolling window.
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Figure B.6. We can see that the dependent variable, the U.S. market equity premium,

is weekly correlated with all 14 predictors across all frequencies. This may partially ex-

plain the earlier findings in Goyal and Welch (2008) that the simple bivariate predictive

model (2.1) forecasts excess returns poorly out-of-sample compared with the historical

mean model (2.4). Furthermore, some predictors, such as dividend-price ratio (dp),

dividend-yield ratio (dy), earnings-price ratio (ep) and book to market ratio (bm), are

highly correlated with each other. This may explain the poor out-of-sample performance

of the “kitchen-sink” model which includes all predictors in Goyal and Welch (2008).

2.3.2 Bivariate Model Prediction

To reexamine the empirical results of Goyal and Welch (2008) with updated data, here

we use model (2.1) to forecast equity premium out-of-sample for all 14 predictors. Then

we present the out-of-sample time series plots of the cumulative difference of squared

forecast error (CDSFE) between model (2.1) and the historical benchmark model (2.4) for

all predictors. The monthly, quarterly and yearly CDSFE plots are shown in Figure B.7,

Figure B.8 and Figure B.9, respectively. This is an informative graphical device that

shows an individual model’s out-of-sample forecasting performance over time. When

the curve in each panel of those figures increases, the predictive model outperforms the

historical average model, while the opposite holds when the curve decreases. These

plots conveniently illustrate whether an individual model has a lower MSFE than the

benchmark over a selected out-of-sample evaluation period. A predictive model that

always beats the benchmark for any period will have a curve with a slope that is always

positive.

From Figure B.7, Figure B.8 and Figure B.9, we can see that the historical mean

model still outperforms most predictors even with updated data. Furthermore, there

is no models or predictors which consistently outperform the historical mean over the

evaluation period for all data frequencies. These figures also suggest that dividend-price
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ratio (dp), dividend-yield ratio (dy), earnings-price ratio (ep) and book to market ratio

(bm) tend to outperform the benchmark over the most part of the evaluation period.

This is not surprising because in the previous section we have shown that these variables

are highly positively correlated with each other, but they are weakly correlated with the

market premium. Overall, whether these variables have statistically significant predic-

tive power is questionable in linear predictive models, so it is still difficult to identify

individual predictors that reliably beat the benchmark in predicting excess returns.

2.3.3 Forecast Excess Returns Using Combined Model

Rapach et al. (2010) and Rapach and Zhou (2013) conclude that forecast combination

appears successful for out-of-sample premium prediction because it can substantially re-

duce forecast variance and include information from various economic predictors. They

also suggest that the usefulness of forecast combination ultimately stems from the highly

uncertain, complex and constantly evolving data-generating process underlying the ex-

pected market excess returns. They find that combining forecasts, especially using equal

weights averaging all models, outperform the historical average by statistically and eco-

nomically meaningful margins, and more consistently than a range of individual models

suggested by the literature.

Our main empirical contribution is to prove that the two-stage forecast combination

method outlined in section 2.2.2.5, can substantially improve the out-of-sample forecast

performance using the same dataset studied by Rapach et al. (2010) and Rapach and

Zhou (2013). The out-of-sample performance are evaluated and compared using both the

CDSFE plots and the Campbell and Thompson (2008) R2
OS. The results hold consistently

for all data frequencies.

Before reporting our empirical results on two-stage forecast combination, we start

with presenting the out-of-sample forecast correlation matrices for all bivariate models

for monthly, quarterly and yearly data in Figure B.10, Figure B.11 and Figure B.12,
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respectively. From these figures we can see that forecasts form some models are correlated

to some degree, for example, forecasts from the dividend-price ratio model (dp) and the

long term yield model (lty) are negatively correlated. This graphical device help us

confirm that our choice of equal weights for the second stage combination outlined in

section 2.2.2.5 is more desirable than optimization based complex weights, for example,

the least squares weights.11

In additional to the four first-step combination methods outlined in section 2.2.2,

namely, equal weights, DMSFE weights, SIC weights and Mallows’ weights, we also con-

sider combining all 14 stable models12 (model (2.1)) and all 14 break models (model (2.6))

in the following analysis. They are labeled “stable” and “break”, respectively, in our sub-

sequent figures and tables. So there are six combined models available.

The solid lines in Figure B.13, Figure B.14 and Figure B.15 plot the differences

between the cumulative squared forecast error for the historical mean model and the cu-

mulative squared forecast error for the combined model of all six methods for monthly,

quarterly and annual data, respectively. In contrast to previous figures for the bivariate

model, the CDSFE curves in Figure B.13, Figure B.14 and Figure B.15 are predomi-

nantly positive, indicating that for this particular dataset and forecast problem, forecast

combination delivers substantial and consistent gains compared with individual predic-

tive model. Note that the combined models work particularly well for the monthly data

as the slope of the CDSFE curve is almost positive for the entire out-of-sample evaluation

period for all methods. While for the annual data, it looks like the forecast performance

of the combined model somehow deteriorates towards the end of the evaluation sample

period.

Furthermore, we are interested in comparing the six averaging methods used in our

combined models. This can be done by comparing their associated R2
OS statistics. Ta-

11See Timmermann (2006).
12This is equivalent to the “Mean” combination method used in Rapach et al. (2010), and the “POOL-

AVG” method in Rapach and Zhou (2013).
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ble B.1 reports the out-of-sample R2
OS statistics for all combination methods for all data

frequencies. R2
OS measures the percent reduction in mean squared forecast error (MSFE)

for the combination methods (2.16) given in the first row of Table B.1 relative to the

historical average benchmark forecast by model (2.4). Cp stands for Mallows’ weights.

DMSFE is the discounted mean squared forecast error weights with discount factor θ = 1.

The column titled “Break” shows equal weights for the break version of all bivariate pre-

dictive models. The column titled “Stable” shows equal weights for the stable version of

all bivariate predictive models. We apply the two-stage forecast combination procedure

to the first four columns, meaning that in the first stage, for each bivariate predictive

model, we use Cp, DMSFE, Equal or SIC weights to average its stable and break cases,

then we apply equal weights to all 14 break-adjusted models. For the last two columns,

we simply equally weight all 14 break or stable bivariate predictive models.

From Table B.1 we can see that forecast combination offers the largest gains relative

to the benchmark for monthly data. More than 10% reduction in mean squared forecast

error can be achieved by using combined models. Among the four methods dealing

with the uncertainty on model parameter instability, Mallows’ weights (Cp) perform the

best for all data frequencies. In addition, Mallows’ weights outperform the “mean” or

“POOL-AVG” method13 used in Rapach et al. (2010) and Rapach and Zhou (2013) in

studying the quarterly and monthly data. It is surprising to see that Mallows’ weights

outperform “POOL-AVG” by more than 1% reduction in MSFE for quarterly data.14 We

conclude that using Mallows’ weights to control for the uncertainty on model parameter

instability in the first stage of forecast combination may offer substantial out-of-sample

gains relative to a simple overall equal weights strategy.

The last two columns of Table B.1 suggest that structural breaks or parameter insta-

bility may be one of the reasons why individual predictive model (2.1) fails to beat the

13They are equivalent to the ”Stable” column shown in Table B.1.
14In Rapach et al. (2010), “mean” or “POOL-AVG” combination method offers the largest gains

relative to the benchmark among all models and methods considered for the quarterly evaluation sample
starting from 1965:Q1.
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historical mean model (2.4) in forecasting U.S. market equity premium out-of-sample as

shown in Goyal and Welch (2008) and Rapach et al. (2010) for monthly and quarterly

data. But it is not clear whether we can attribute the failure of individual predictive

models to structural breaks for yearly data because our empirical results show that stable

models offer almost 2% more reduction in MSFE than combining break models.

Since the main goal of this paper is to propose a two-stage forecast combination

method, and to compare and evaluate model averaging methods using a popular dataset

studied by other prominent researchers, we do not address the efficient capital mar-

ket hypothesis problem in this paper. We propose a new forecast combination method

which explicitly deals with structural breaks in linear predictive models and prove its

effectiveness in forecasting the U.S. market excess returns out-of-sample. Specifically, we

demonstrate the outstanding performance of Mallows’ weights in averaging models with

possible breaks via our empirical applications.

2.4 Conclusion

This paper has extended the forecast combination methods to predict the U.S. mar-

ket equity premium out-of-sample. With the strong uncertainty on model parameter

instability, we introduce a two-stage forecast combination method: in the first stage,

for each predictive model, we combine its stable and break cases by using one of the

four outlined methods, namely, equal weights, discounted mean squared forecast error

weights, Schwarz information criterion weights weights and Mallows’ weights. Next, we

pool all adjusted predictive models obtained from the first stage together by applying

equal weights. We apply our two-stage forecast combination method to forecasting the

U.S. market equity premium out-of-sample using an updated comprehensive dataset from

Goyal and Welch (2008), and compare our results with those from Rapach et al. (2010)

and Rapach and Zhou (2013) in similar studies. Our empirical results using Goyal and
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Welch’s data suggest that the two-stage forecast combination method, especially the

one based on Mallows’ weights proposed by Hansen (2009), can potentially offer sub-

stantial forecast gains relative to a simple equal weighting method used in Rapach et al.

(2010) and Rapach and Zhou (2013) over the same dataset. To compare empirical results

with related literature, we use the out-of-sample R2 statistic proposed by Campbell and

Thompson (2008) to evaluate forecasts.

Our theory is confined to the context of linear predictive models. While it would

be greatly desirable to extend the analysis to include other types of model. Another

unexplored issue is inference. At this point it is not clear how to rigorously test whether

or not the mean squared forecast error difference is statistically significant for combined

models with explicitly modeled structural breaks. This is a challenging topic and quite

important for future investigation.
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CHAPTER 3. OUT-OF-SAMPLE FORECAST MODEL

AVERAGING WITH PARAMETER INSTABILITY

3.1 Introduction

Forecast combination or model averaging has been a useful tool employed by econo-

metricians and industry forecasters in studying many macroeconomic and financial time

series, for example, GDP growth rate, unemployment rate, inflation rate and stock

market returns. Combination methods such as Granger–Ramanathan, Bates–Granger,

Bayesian model averaging, least squares combination, discounted mean square forecast

error weights, time–varying combination and survey forecasts combination have been

developed for forecasting under various settings.

There are several reasons explaining the popularity of forecast combination or model

averaging in empirical research. First, it is highly possible that a single forecasting model

is misspecified due to information constraints. For example, predictors that potentially

could help improve forecasting performance are not included in the underlying model,

so combining forecasts or averaging models may help the forecaster better manage the

risk induced in the model selection process and take advantage of all available infor-

mation. Even in a stationary world, the true data generating process may be a highly

complicated nonlinear function of lags of infinite order and variables which are difficult

to measure precisely in practice, consequently, most linear forecasting models proposed

by researchers can only be viewed as local approximations for the best linear predictor.

It is hard to believe that one predictive model strictly outperforms all other models at
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all points in time, rather, the best forecasting model may change over time. Due to

small sample size for some variables of interest and imperfect information, it is difficult

to track the best model based on past forecasting performance. Therefore, combining

models can be taken as a practical way to make forecasts robust to misspecification bias,

especially when forecasts from various sources are not highly correlated. For example,

if the bias is idiosyncratic in each individual model, then combining forecasts from all

candidate models may help average out this bias.

Second, a forecasting model’s adaptability to parameter instability or structural

breaks may not be constant across time. Drastic government policy changes or financial

institution reform may bring about structural breaks in the time series variable of in-

terest. An example worth mentioning here is the Great Moderation. Many researchers,

such as Stock and Watson (2003) and Stock (2004), agree that there is a structural break

in the volatility of the U.S. GDP growth rate around mid-1980s as the series becomes

less volatile since then. Other developed countries, such as Canada and Germany, have

seen the same pattern starting around the same period.1 Depending on the magnitude

and the frequency of the break process, forecasters may prefer a non-stationary model in

which all or some of the parameters have changed around the estimated break dates to

a stable model where all parameters are assumed constant, but problems arise when the

magnitude of the break is small or the evidence of parameter instability is not convincing.

In this case, the pre-test model, that is, the single forecasting model selected based on

hypothesis testing or information criteria, may not be the best choice for prediction if

we assess and compare its performance with other candidates according to mean squared

forecast error (MSFE). Why? On one hand, the estimation or dating of structural

breaks can be very imprecise. On the other hand, the quality of the break dates esti-

mates depends not only on the break size measured by some metric, but also on whether

1Arguments explaining this phenomenon include technology progress or innovation, monetary policy
change and financial system reform, etc.
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the impact of the break is dominated by the volatility of the process.2 Additionally, for

some time series variable of interest, we may reach different conclusions if we study the

same variable with a different data frequency. For instance, researchers have conducted

research on the stock market returns based on various frequency choices, daily, monthly,

quarterly or yearly. For the structural break analysis, it is hard to confirm or prove that

the estimated structural break dates from all frequencies coincide.3 Given this model

selection uncertainty, forecast combination may offer diversification gains that make it

attractive to average the break and stationary models, rather than relying on a pre-test

model. See Timmermann (2006) for a comprehensive survey of forecast combination.

In an empirical paper studying the U.S. aggregate equity market returns, Rapach

et al. (2010) argue that forecast combination is a powerful tool against structural breaks

in predicting excess stock returns. For given sample split choices, according to Campbell

and Thompson (2008) out-of-sample R2 statistic, they show that forecasts generated

by pooling all fifteen models are more accurate than those obtained from any single

forecasting model or the large kitchen-sink model. But they do not provide detailed

econometric theory explaining why forecast combination methods, such as equal weight

and discounted mean squared forecast error weight used in their paper, may help deal

with structural breaks.

In spite of these aforementioned possible benefits, a puzzle associated with forecast

combination is that in many empirical applications, equally weighted forecast schemes,

i.e., each candidate model receives weight one divided by the total number of models,

tend to outperform various optimal combination weights proposed by researchers, no-

tably the Granger–Ramanathan combination. A paper attempting to explain this puzzle

2We have conducted simulation for this case. Our simulation results indicate that, even if there is a
break in the conditional mean of the DGP, as long as the magnitude of the break is strictly dominated
by the variance of the error term, it turns out that the stable version of the DGP outperforms the true
DGP evaluated by root mean squared forecast error on average.

3For example, the estimated break date based on monthly data does not fall into the same year if
estimated using yearly data. There are several empirical papers (Rapach and Wohar (2006) Paye and
Timmermann (2006)) related to dating structural breaks based on different data frequencies and models.
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is written by Elliott (2011b). Elliott argues that if the variance of the unforecastable

component of the variable is large, the gains from optimal forecast combination will

be strictly dominated by the unpredictable component. Additionally, the noise intro-

duced by estimating various optimal combination weights, especially when the number

of weights is large, further reduces combination gains.

Having all the benefits and drawbacks mentioned above in mind, in this paper, we

focus on the situation where forecasts are generated by two competing models and study

if we can come up with model averaging weights possibly superior to others in terms of

better managing structural breaks and conditional heteroscedasticity. These two com-

peting models share the same regressors, but one has a structural break in the conditional

mean while the other is stable. This framework applies to situations in which: (i) Re-

searchers or forecasters cannot find convincing evidence supporting structural breaks; (ii)

The model is not correctly specified. Specifically, we propose model averaging weights

derived from the cross–validation information criterion to combine the break model and

the stable model in the out-of-sample forecast setting.

The cross–validation information criterion is an unbiased estimate of the mean squared

forecast error or the expected test error rate, so naturally, it is appropriate to apply CV

to the out-of-sample forecasting and forecast evaluation analysis. Studies have shown

that the cross–validation criterion outperforms various other criteria in model selection

under conditional heteroscedasticity, notably in determining the order of ARMA models.

Under the assumption of conditional homoscedasticity, we show that the cross–validation

criterion is asymptotically equivalent to Mallows’ Cp criterion, so the asymptotic opti-

mality properties associated with Mallows’ weights carry over to the cross-validation

weights. A natural extension is to relax this homoscedastic error assumption as it may

be too strict for relevant empirical applications. Our main contribution is to derive

the cross–validation model averaging weights under conditional heteroscedasticity with

breaks, and to show that CV weights are the correct weights minimizing the expected
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mean squared forecast error in this situation. Monte Carlo evidence and empirical ex-

amples are provided to support our results.

The remainder of this paper is organized as follows: Section 3.2 provides a review

of the related literature. Section 3.3 first describes the econometric model and the

forecasting problem, then presents theoretical results for the model averaging weights.

Section 3.4 presents Monte Carlo evidence. Section 3.5 provides two empirical examples

comparing our method with others. Section 3.6 concludes.

3.2 Related Literature

This paper relies on the literature related to the information criterion-based model

selection and averaging, structural breaks testing and out-of-sample forecast comparison

and forecast evaluation.

Recently, Hansen has published a series of papers4 which help develop relevant econo-

metric theory for the use of model averaging under various situations, and has pushed

the forecast combination theory to a new level. He establishes that under the assumption

of conditional homoscedasticity and the restriction of weight discretization, model aver-

aging estimators based on Mallows’ criterion are asymptotically optimal in the sense of

minimizing the expected mean squared error (MSE) while controlling omitted variable

bias. The reason for using Mallows’ criterion is because it is an asymptotically unbiased

estimator of the in-sample MSE or one-step ahead out-of-sample MSFE compared with

other criteria, such as Akaike information criterion (AIC) or Schwarz-Bayesian informa-

tion criterion (SIC). Hansen (2008) then extends his Mallows’ model averaging theory

to forecast combination and compares its performance with other related combination

methods based on simulated data. He shows that Mallows’ criterion is an approximately

unbiased estimator of MSFE even for a stationary time series, but the optimality results

do not apply. In order for the asymptotic optimality results to hold, we need the data of

4See Hansen (2007), Hansen (2008), Hansen (2009) and Hansen and Racine (2011).
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interest to be independent and identically distributed. Unfortunately, this restriction of

i.i.d. data has made the optimality property less relevant to many empirical applications

where the data under study is time series, for example, GDP growth rate, stock returns,

inflation rate and currency market volatility. Even more stringently, Hansen imposes

the restriction that the models under consideration are strictly nested in order to ensure

optimality.5 Having these restrictions mentioned above, it is natural to replace Mallows’

Cp with a criterion which can be applied more generally. Comparing Mallows’ Cp with

the cross-validation criterion, Andrews (1991) demonstrates that Mallows’ criterion is

no longer optimal in model selection if allowing for conditional heteroscedasticity, and

CV is the only feasible criterion among popular candidates that are asymptotically op-

timal under general conditions. Following earlier research, Hansen and Racine (2011)

relax the assumption of conditional homoscedasticity and nested linear models to show

model averaging optimality by replacing the Mallows’ criterion with the cross-validation

criterion, but the asymptotic optimality property is still restricted to random samples.

Alternatively, Liu and Okui (2012) propose a heteroscedasticity-robust Mallows’ criterion

which generalizes Hansen’s least squares model averaging optimality results by allowing

for conditionally heteroscedastic errors.

To make model averaging more appealing to empirical applications, it is natural to

extend the optimal weighting theory to the structural breaks setting, so bringing leading

research on dating and estimating breaks to model combination is desirable. Historically,

applied econometricians rely on the Chow test to test for structural breaks, but the use of

Chow’s test assumes that the researcher knows the exact date of the structural break, if it

indeed happens. If the researcher or policy maker has superior information set on possible

break dates, or events potentially leading to parameter instability, conducting inference

by Chow test seems reasonable. Otherwise, this assumption seems quite unrealistic

and requires that econometricians visually examine the time series data to search for a

5Hansen considers a sequence of nested MA models.
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possible break point. To take the impact of unknown break date into account, in a seminal

paper, Andrews (1993) proposes a SupW type test statistic for detecting breaks and

presents the associated asymptotic distribution for the test statistic. Note that Andrews’

paper does not explicitly show how to estimate the break date and its consistency, but

it implies that the break date can be estimated by concentration.6 Subsequently, Bai

(1997), Bai (1999) and Bai and Perron (1998) have a series of articles on rigorous break

date estimation and testing, and have extended the econometric theory to multiple breaks

and partial breaks. Bai and Perron’s computational procedure for detecting breaks is

adopted in many empirical works related to macroeconomic and financial time series since

it is reasonable to think that there could be multiple structural breaks, for example, the

U.S. equity markets have experienced institutional change and several financial crises

since the early twentieth century. Additionally, there is research on optimal testing

in the structural change setting, see Andrews and Ploberger (1994), Andrews (2003),

Hansen (2000), Elliott and Muller (2006) and Rossi (2005).

For the prediction problem, from the perspective of a forecaster, testing for structural

breaks is not the end. How to better predict the future and evaluate forecasts is of great

importance to econometricians working on economic forecasting. Theory on forecasting

with breaks is still evolving as new methods are proposed and evaluated. One specific re-

search topic is the selection of the optimal data window to estimate the predictive model.

The choice of window involves a bias-variance trade-off: For a given break date estimate,

including more data before the estimated date may help reduce the mean squared fore-

cast error, but doing so could result in more bias in the parameter estimation.7 As an

alternative to model averaging when parameter instability is possible, researchers have

proposed various in–sample and out–of–sample tests to select a predictive model which

is robust to structural breaks.8

6The date that leads to the largest reduction of the sum of squared errors relative to the no break
benchmark.

7See Pesaran and Timmermann (2007) and Pesaran et al. (2011).
8See Giacomini and Rossi (2010), Bunzel and Calhoun (2012) and Inoue and Kilian (2004).
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3.3 Econometric Theory

3.3.1 Model and Estimation

The econometric model used to forecast and its estimation method are closely related

to Hansen (2009) and Andrews (1993).9 The model we are interested in is a linear

time series regression with a possible structural break in the conditional mean. The

observations we have are time series {yt, xt} for t = 1, ..., T , where yt is the scalar

dependent variable and xt is a k × 1 vector of related predictors and possibly lagged

values of yt, k is the total number of regressors or predictors included.10 Parameters are

estimated by ordinary least squares. The forecasting model allowing for structural break

is:

yt = x′tβ1I[t<m] + x′tβ2I[t≥m] + et (3.1)

where I[•] is an indicator function, m is the time index of the break and E(et|xt) = 0.

The break date is restricted to the interval [m1,m2] which is bounded away from the

ends of the sample on both sides, 1 < m1 < m2 < T . In practice, a popular choice is

to use the middle 70% portion of the sample. We assume that all information relevant

to forecasting is included in the regressors xt, and the source of model misspecification

comes solely from the uncertainty about parameter stability. This is in contrast to many

applied econometric models where model misspecification bias comes from the wrong

choice of regressors but the parameters are assumed stable.

We can also use a stable linear model to forecast:

yt = x′tβ + et (3.2)

The traditional pre-test procedure starts with performing a test for structural breaks,

for example, using Andrews’ SupF or SupW test, and then decide which model to choose

9Andrews considers GMM as the primary estimation method.
10Since we are interested in forecasting, yt can be thought of as the variable to be predicted for the

next period using currently available information xt.
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based on testing results.11 As an alternative to model selection, we can combine these

two models by assigning weight w to model 3.1 and 1 − w to model 3.2, where w ≥ 0.

So the combined predictive model is

yt = w
{
x′tβ1I[t<m] + x′tβ2I[t≥m]

}
+ (1− w) {x′tβ}+ et (3.3)

With the forecasting model ready, next, we are going to present the cross-validation

criterion in detail which is crucial in determining the optimal weight w in equation 3.3.

3.3.2 Cross-Validation Criterion

There are several popular information criteria for model selection: for example,

Akaike information criterion (AIC), corrected AIC (AICc), Schwarz-Bayesian infor-

mation criterion (SIC), Hannan-Quinn (HQ) and Mallows’ Cp (Cp). Most criteria have

two components in their formulas: the first part measures model fit while the second

penalizes overfitting. Many information criteria share the same component measuring

the in-sample fit, but they differ in the degree of overfitting penalization. For instance,

AIC penalizes each additional parameter by 2 while SIC penalizes overfitting by the log-

arithm of the sample size, so SIC tends to select a more parsimonious model than AIC

if the sample size is large.

For the forecasting analysis, what we care about is the test error rate assessing the

model predictive ability, not the training error rate produced in the model estimation

stage, so selecting a information criterion which gives a good estimate of the expected

test error rate is crucial. Cross-validation is such a criterion. Specifically, we focus on

the use of the leave-one-out cross-validation for this paper, though other CV variants,

such as K–fold cross-validation, may be considered. Cross-validation is computation-

ally simple for the one-step ahead predictive model selection and is shown robust to

11This can be done in various ways. One is to treat various possible number of breaks as different
models, then select one according to some information criterion, e.g., AIC, SIC or Mallow’s. Another
way is hypothesis testing, following the relevant testing procedures outlined in Andrews (1993), Bai and
Perron (1998) and Elliott and Muller (2006).
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conditional heteroscedasticity in the econometrics and statistics literature. For forecast

combination, researchers have applied CV to the quadratic programming based model

averaging analysis, but its setting does not include structural change.

The sample leave-one-out cross-validation criterion can be computed by the following

procedure:

ĈVT (m) =
1

T

T∑
t=1

ẽt(m)2 (3.4)

where ẽt(m) = yt − β̃−t(m)′xt(m) are the residuals from the regression with the tth ob-

servation dropped and β̃−t(m) = (
∑

i 6=t xi(m)xi(m)′)−1(
∑

i 6=t xi(m)yi) is the associated

vector of parameter estimates. Intuitively, this procedure is trying to estimate the ex-

pected test error rate based on the training data. Though equation 3.4 implies that

we need to run the regression T times for given sample size T , fortunately, for linear

regression models, we can calculate the sample CV value by running regression only

once. Formally, the leave-one-out cross-validation residuals can be computed from the

full sample least squares residuals, ẽt = êt
1−ht , where ht = x′t(X

′
tXt)

−1xt is the leverage

associated with observation t, êt is the full sample least squares residual and ẽt is the

cross-validation residual. So we can rewrite equation 3.4 as

ĈVT (m) =
1

T

T∑
t=1

(
êt(m)

1− ht

)2

(3.5)

In the next section we are going to show how model averaging weights are derived from

the cross-validation criterion.
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3.3.3 Cross-Validation Weights

We start this section by listing relevant assumptions needed for our results.

Assumption 1. Suppose the following holds:

1. The true data generating process satisfies the linear process yt = x′tβt + et, t =

1, ..., T, βt ∈ Rk, where βt = β + T−1/2η(t/T )δσt. η(•) is a Rk valued Riemann

integrable function on [0, 1] and δ ∈ R\{0} is a scalar indexing the magnitude of

parameter variation, σt is the standard deviation of the error term at period t.

2. {(x′t, et)} is α-mixing of size −r/(r−2), r > 2 or φ-mixing of size −r/(2r−2), r ≥ 2.

3. E(xtet) = 0,∀t, and the process {xtet} is uniformly Lr-bounded, i.e., ||xtet||r < B,

where B is a constant and B <∞.

4. T−1/2
∑[πT ]

t=1 xtet ⇒ W (π) where W (π) is a k × 1 Wiener process with symmetric,

positive definite long-run covariance matrix Σ ≡ lim
T→∞

VAR(T−1/2
∑[πT ]

t=1 xtet), for

0 ≤ π ≤ 1. ‘⇒’ denotes the weak convergence of the underlying probability measure

as T →∞.

5. T−1
∑[πT ]

t=1 xtx
′
t converges uniformly to πQ for all π ∈ [0, 1], Q = E(xtx

′
t) and all

eigenvalues of Q are uniformly bounded away from zero. [πT ] denotes the integer

part of the product πT .

6. E(et|xt) = 0 ; E(e2
t |xt) = σ2

t .

Assumption 1.1 states that the true data generating process for yt takes a general

parameter variation form and structural break occurs in all parameters. In each period,

the change of the true parameter value is of small magnitude so that the asymptotic

distributions are asymptotically continuous. Additionally, the parameter variation is

proportional to the unconditional standard deviation of the error term, so the impact of

parameter instability will not be dominated by that of the volatility. This type of data
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generating process is quite general, as it includes several commonly used models, for

example, the single break model with the absolute change of parameter values positive

in one period while zero in others.

In practice, if there is no clear guidance or information on which subset of parameters

are unstable a priori, it is natural to assume that all parameters are subject to break.

This full-break in the conditional mean assumption is less restrictive, so empirically it is

widely adopted in applications of detecting and dating breaks, see Rapach and Wohar

(2006) and Paye and Timmermann (2006).

Notice that our predictive model outlined earlier only allows for one possible break in

the conditional mean, so it is highly possible that the forecasting model, either the pre-

test model or the averaged model, is misspecified. We make this assumption allowing for

the gap between the true data generating process and the forecasting model primarily

for two reasons. First, in practice the true data generating process is almost always

unknown to researchers, as it may be a complicated process possibly involving past

values of infinite order. In addition, the true dynamics and parameter stability are very

difficult to capture by models based on limited information. Second, for the prediction

problem, the goal is not to come up with a highly complex model to fit the training data

as closely as possible measured in terms of the learning error rate. Instead, forecasters

pay more attention to the test error rate. By reducing the complexity of the predictive

model, we hope our model to be more adaptive to environment change in the future.

Assumptions 1.2 – 1.5 ensure that we can apply all relevant mixing laws of large

numbers, functional central limit theorem or Donsker’s invariance principle when prov-

ing our results. See Davidson (1994) for more details on advanced asymptotic theory.

Assumption 1.6 states that the error term is conditionally heteroscedastic.

Because the cross-validation criterion estimates the expected test error rate, or the

expected mean squared forecast error rate, the optimal weights should be those mini-

mizing the cross-validation criterion, which can be interpreted as weights minimizing the
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expected test error rate. To obtain model weights, first, we need to show what the cross-

validation criterion looks like under our assumptions. We start with a proposition on

the cross-validation criterion form when the error term is conditionally homoscedastic.

The proofs of all theoretical results are provided in the appendix.

Proposition 3.3.1. If Assumption 1 holds but E(e2
t |xt) = σ2, the leave-one-out cross–

validation criterion is asymptotically equivalent to Mallows’ criterion, that is, E(CV (T ))
p→

E(Cp(T )).

This proposition states that since conditional homoscedasticity is a special case of con-

ditional heteroscedasticity, all the asymptotic optimality results from Mallows’ criterion

carry over to the cross-validation criterion when the errors are conditionally homoscedas-

tic.

We know that the information criterion usually consists of two parts: one measures

the in-sample fit while the other penalizes overfitting. Specifically, by proposition 3.3.1,

since CV and Cp are asymptotically equivalent, for the CV criterion, we have

E(CV (T )) = E(σ̂2) + 2E(e′Pe) (3.6)

In equation 3.6, σ̂2 measures the in-sample fit, 2E(e′Pe) is the population penalty term

where e is the vector of the errors and P is the projection matrix. The penalty term,

2E(e′Pe), is crucial in determining the optimal weights for the averaged model 3.3, as the

population optimal weight w can be obtained by minimizing E(CV (T )). If we can find

a sample analogue of E(CV (T )), the optimal weights can be obtained by minimizing

the sample criterion. Because the population penalty term 2E(e′Pe) depends on the

true data generating process, it cannot be consistently estimated in practice. To obtain

the feasible sample CV criterion and the associated sample optimal weight ŵ, following

Hansen’s approach, the value of 2E(e′Pe) can be approximated by averaging two extreme
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cases,12 so that is how the p̄ value proposed by Hansen, where p̄ = 1
2

(E(SupW ) + k),13

enters the break model weight in the following corollary.

Corollary 3.3.1. With conditionally homoscedastic errors, the feasible sample optimal

CV weight for the break model is:

ŵ =
(T − 2k)(

∑T
t=1 ẽ

2
t −

∑T
t=1 ê

2
t )− p̄

∑T
t=1 ê

2
t

(T − 2k)(
∑T

t=1 ẽ
2
t −

∑T
t=1 ê

2
t )

(3.7)

if (T − 2k)(
∑T

t=1 ẽ
2
t −

∑T
t=1 ê

2
t )(
∑T

t=1 ê
2
t )
−1 ≥ p̄ while ŵ = 0 otherwise. T is the sample

size, k is the number of regressors, êts are the ordinary least squares residuals from the

break model, ẽts are residuals from the stable model, p̄ is the penalty coefficient whose

value depends on the asymptotic distribution of the SupW test statistic.

The sample optimal weight ŵ is obtained by minimizing the sample CV criterion for

the weighted model.

It is widely known in the model selection literature that the CV criterion is superior

to Mallows’ and other information criteria because of its robustness to heteroscedasticity

Andrews (1991), our next proposition establishes the asymptotic distribution of the CV

penalty term in the presence of conditional heteroscedasticity.

Proposition 3.3.2. If Assumption 1 holds, then the penalty term in the cross-validation

criterion converges in distribution to a weighted sum of independent χ2 distribution with

degree of freedom one, plus a term whose distribution is a function of a Brownian bridge,

e′P (m̂)e
d→

k∑
j=1

λjχ
2(1) + J0(ξδ) (3.8)

where λjs are the eigenvalues of the matrix Q−1Σ, Σ is the long-run variance of 1√
T

∑T
t=1Xtet,

Q = E(xtx
′
t) and J0(ξδ) is the asymptotic distribution of the Sup-Wald type statistic un-

der the true data generating process.

12One is that the break size is extremely large while in the other case the break size is 0.
13E(SupW ) is the expectation of the SupW statistic in Andrews (1993). Hansen (2009) provides a

table of the sample p̄ value for a range of the number of regressors based on simulation results.
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Comparing this result with Hansen’s, we can see that the distribution under condi-

tional homoscedasticity is just a special case of what is shown in proposition 3.3.2. That

is, the weights for the χ2 random variables are identical and they take the value of one,

which results in a χ2 distribution with degrees of freedom equal to the total number of

regressors. In our results, λjs can take different values which capture the impact brought

to the weight by allowing for conditional heteroscedasticity. Intuitively, the first term on

the right-hand-side of equation 3.8 reflexes the impact of conditional heteroscedasticity

while the second term deals with the structural break.

The expectation of
∑k

j=1 λjχ
2(1) is simply

∑k
j=1 λj which is the trace of the matrix

Q−1Σ, where Σ is the long-run variance of 1√
T

∑T
t=1Xtet and Q = E(xtx

′
t). Empirically,

Σ can be estimated by HAC estimators and Q can be consistently estimated by its sample

analogue 1
T

∑T
t=1 xtx

′
t.

Again, the penalty term of the CV criterion depends on the true data generating

process as reflected in the J0(ξδ) term, it cannot be consistently estimated in practice.

To obtain the feasible sample CV criterion, following earlier approach we can approximate

J0(ξδ) by averaging two extreme cases utilizing Hansen’s p̄ value. The feasible sample

optimal weight ŵ for the break model can be obtained by minimizing the sample CV

criterion associated with the averaged model.

Corollary 3.3.2. The feasible optimal weight minimizing the sample cross-validation

criterion for the break model in the presence of conditional heteroscedasticity takes the

form:

ŵ = 1−
tr
(
Q̂−1Σ̂

)
+ 2p̄− k

2
(∑T

t=1 ẽ
2
t −

∑T
t=1 ê

2
t

) (3.9)

if (
∑T

t=1 ẽ
2
t −

∑T
t=1 ê

2
t ) ≥ p̄∗ while ŵ = 0 otherwise. êts are the OLS residuals from the

break model and ẽts are residuals from the stable model, tr(Q̂−1Σ̂) is the trace of the

matrix Q̂−1Σ̂, p̄∗ = 1
2
(tr(Q̂−1Σ̂) + 2p̄− k).



www.manaraa.com

54

In the next section, through several designs we are going to assess the sample perfor-

mance of CV weights comparing with Cp weights and other related methods in controlled

simulations.

3.4 Simulation Results

Here we are going to evaluate the forecast performance of CV model averaging

through controlled numerical simulation. Specifically, we are going to consider three

different designs of the true data generating process: (i) an AR(2) process plus five

exogenous predictors with ARCH(1) errors,

yt = µ+ ρ1yt−1 + ρ2yt−2 +
5∑
i=1

θixi + et (3.10a)

et = vt
√
ht (3.10b)

ht = α0 + α1e
2
t−1 (3.10c)

(ii) an AR(2) process plus two exogenous predictors with heteroscedastic errors drawing

from the Normal distribution N(0, y2
t−1)

yt = µ+ ρ1yt−1 + ρ2yt−2 +
2∑
i=1

θixi + et (3.11)

(iii) an AR(2) process with a single break in the variance of the error term. Although

our theory does not explicitly address the volatility break situation, we consider this

design to investigate and compare the predictive performance of CV model averaging

with other related methods in the Great Moderation type environment. In this design,

the break date of the error term variance is not identical to that of the conditional mean.14

We allow for this break date difference hoping to better approximate the environment

forecasters face in practice.

14In this simulation, we set the break fraction of the error term variance at 0.5 relative to the training
sample, while the break fraction for the conditional mean is set at 0.3 relative to the training sample.
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Mathematically, the data generating process for design (iii) is the following:

yt = µ+ ρ1yt−1 + ρ2yt−2 + et (3.12)

where

et ∼

 N(0, σ2) t ∈ [1, τv]

N(0, 1
4
σ2) t ∈ [τv + 1, R]

In all three designs there is a one-time structural break in all coefficients of the conditional

mean occurring at the 30%th observation of the training sample R, that is, π = 0.3. We

let the structural break take the multiplicative form, that is, if the pre-break coefficient

is β, then the post-break value becomes δβ, where δ is a tuning parameter controlling for

the break size. For the ARCH process, vts are drawn independently and identically from

the standard normal distribution. Other predictors are drawn i.i.d. as the following:

x1 ∼ N(0, 4), x2 ∼ U[−2, 2], x3 ∼ N(0, 16), x4 ∼ t(5) and x5 ∼ Binomial(1, 0.02).

The parameter values for all data generating processes listed above are: µ = 2, ρ1 =

0.4, ρ2 = 0.2, θ1 = 0.8, θ2 = −0.4, θ3 = 2, θ4 = −3.5, θ5 = 10, α0 = 1, α1 = 0.4. These

values are chosen to satisfy the stationarity and ARCH error regularity restrictions. It is

worth mentioning that, in our simulations, the post-break parameter values of interest

become smaller than their pre-break counterparts (δ < 1). This choice of break direction

provides us with more freedom in controlling the break size, for example, if the true data

generating process is an intercept-free AR(1) model with pre-break parameter value 0.9,

δ cannot take values greater than 1.1 if stationarity is to be maintained.15

After presenting the data generating processes, next, to capture the model selec-

tion uncertainty researchers face in choosing the best local approximating models, the

forecasting model in each design differs from the true data generating process:16 in

15Bai and Perron (1998) assume that the break size is large enough in order to be identified and
estimated. Though we have not found any leading metric measuring the break size, break size of 1.1
mentioned in the example is not large enough for identification purpose, especially when the data is
highly volatile as those generated in our simulations.

16The difference of the AR order between the DGP and the forecasting model captures the fact that
in practice, it is hard to fully capture the dynamics by selecting the ‘true’ order. By the principle of
parsimony, researchers tend to select a model of small order.
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case (i) the model to forecast is based on some exogenous predictors in the DGP,

yt = µ+
∑4

i=1 θixi + et; in case (ii), again the model to forecast does not involve the AR

component, yt = µ +
∑2

i=1 θixi + et; in case (iii), the model to forecast is AR(1) with

intercept, yt = µ+ ρ1yt−1 + et.

In each design, for a given weighting method, we evaluate its out-of-sample (OOS)

performance by comparing the average root mean squared forecast error divided by that

of the equal weights method. Recursive window is used to generate OOS forecasts as it

mimics the practice that forecasters update their forecast when new data become avail-

able, so weights are also constructed recursively. Specifically, out-of-sample forecasts

are constructed by the following steps: First, we split the time series sample into two

parts, the prediction or training sample of size R and the evaluation or test sample of

size P . Under the recursive window, at each point in time, the estimated parameters

are updated by adding one more observation starting with sample size R. For example,

βt = (
∑t−1

s=1 xsx
′
s)
−1
∑t−1

s=1 xsys+1, βt+1 = (
∑t

s=1 xsx
′
s)
−1
∑t

s=1 xsys+1. By this procedure,

we estimate parameters recursively, and then generate a sequence of forecasts of size P

based on these estimated parameters. We can compare this sequence of forecasts with

those reserved data in the evaluation sample, and assess the quality of our forecasts ac-

cording to some loss function, for example, MSFE. See Calhoun (2013), Calhoun (2014),

McCracken (2000), McCracken (2007), Rossi (2013), Clark and McCracken (2001), Clark

and McCracken (2005), Clark and McCracken (2013), Clark and West (2007) and West

(2006) for more details on out-of-sample forecasting.

The total sample size, T = R+P , is 200. To investigate if the choice of the evaluation

sample size has an impact on forecasting results, in our pseudo one-step ahead out-of-

sample forecasting simulations, we reserve the first 170 and 150 (R = 170 and R = 150)

observations as the training sample and the rest as the prediction sample (P = 30 and

P = 50) in two separate experiments for each design. For the break model, we use the

post-break window method to forecast out-of-sample as it is simple to implement and
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does not involve the estimation of additional parameters. Other techniques, such as the

optimal window method proposed by Pesaran and Timmermann (2007) or the robust

weight method proposed by Pesaran et al. (2011) could also be considered.17

In each case, to evaluate and compare performance, we generate forecasts using

six methods:18 (i) Mallows’ model averaging (Cp); (ii) CV model averaging (CV);

(iii) Bayesian model averaging19 (SIC); (iv) stable model (Stable); (v) break model

(Break); and (vi) equal weights20 (Equal). We assess their predictive performance by

root mean squared forecast error (RMSFE). For ease of comparison, we pick the equal

weight method as the benchmark21 and compute the relative performance (Ratio) for

each method, for example, RMSFECV/RMSFEEqual. If the ratio is less than one, it in-

dicates that the method under consideration outperforms the benchmark. The smaller

the ratio is, the better the forecasting performance is for a given sample split.

3.4.1 Design I

Simulation results for the ARCH error design are reported in table C.1.22 We can

see from the table that CV outperforms Cp across all considered break sizes and test

sample sizes. Both of CV and Cp’s relative RMSFE decrease monotonically as the

17Currently, researchers are still working on developing theory and methods related to forecasting
with breaks, and we are not aware of any dominant method that works well in most empirical applica-
tions. The simulation conducted by Pesaran and Timmermann suggests that there is little gain from
complicated methods. The simple rule, to forecast using the data after the detected break, seems to
work as well as anything else.

18Methods such as Bates-Granger combination, Granger-Ramanathan combination and common fac-
tor combination are not considered in our simulation. In a related paper, Clark and McCracken (2011)
conclude that “...it is clear that the simplest forms of model averaging—such as those that use equal
weights across all models—consistently perform among the best methods...forecasts based on OLS-type
combination and factor-based combination rank among the worst”. So we only compare our method
with either closely related or empirically proven effective methods.

19We call this method “Bayesian” not in a strict sense: the Bayesian weight for each model is calculated
based on the value of the Schwarz-Bayesian information criterion, i.e., the weight for the break model
is wb = exp (SICb)/(exp (SICb) + exp (SICs))

20Each model receives weight of 0.5.
21The reason to pick equal weights as the benchmark is because of the aforementioned forecast combi-

nation puzzle: equally weighted forecasts tend to outperform other complex methods in empirical works.
Here we would like to examine whether it dominates our method when facing structural breaks.

22Our results also hold in the GARCH error case.
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break size increases, but CV’s relative RMSFE decreases slightly faster. On the other

hand, Bayesian weighting does slightly worse than the equal weights method, and its

performance deteriorates when the break size becomes large as it fails to capture the fact

that the evidence supporting the break is becoming stronger.

For the non-averaged models, it is not surprising that the break model does well

because structural break indeed happens in the DGP, and its relative RMSFE decreases

as the break size becomes large.

Overall, our results imply that when there is ARCH type conditional heteroscedas-

ticity in the data and when the break impact is not strictly dominated by that of the

volatility, the cross-validation weighting method outperforms Mallows’ model averag-

ing. Additionally, CV outperforms equal weights so the forecast combination puzzle

does not apply in this design. Bayesian model averaging is approximately equivalent to

equal weighting, but it is less sensitive to the change of break size. Compared with CV,

Bayesian criterion weighting does not put more weight on the proper model even when

the break size becomes large.

3.4.2 Design II

Simulation results for the second design are reported in table C.2. Here we can see

that CV outperforms Cp across all break sizes and test sample sizes considered. Both

of their relative RMSFE decrease monotonically as the break size increases, but now

the RMSFE of CV decreases faster. Bayesian weighting does almost the same as equal

weighting, but its performance deteriorates when the break size becomes large as we have

seen in the previous design. The choice of the test sample size does not seem to have

any significant impact on any weighting methods or non-averaged models.

Overall, our results indicate that when there is “wild” type heteroscedasticity in the

data as modeled in the DGP and when the break impact is not strictly dominated by

that of the volatility, the cross-validation weighting outperforms Mallows’ model averag-
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ing, especially when the break size is large. Additionally, CV outperforms equal weights

so the forecast combination puzzle does not apply in this design. Bayesian model aver-

aging is approximately equivalent to equal weights. Again, compared with CV, Bayesian

weighting method does not put more weight on the proper model when the break size

increases.

3.4.3 Design III

Simulation results for this Great Moderation type design are reported in table C.3.

The general pattern shown in the previous two designs remains in this case. CV out-

performs Cp across all considered break sizes and prediction sample sizes. Both of their

relative RMSFE decrease monotonically as the break size increases, but the relative

RMSFE of CV decreases faster. Bayesian weighting does almost the same as equal

weighting, but its performance is less sensitive to the break size in this case.

3.4.4 Summary

We have compared the statistical performance of CV weights with other competing

methods, such as Mallows’ Cp weights, equal weights and Bayesian information criterion

weights, in three simulation designs. All the experiments show that CV weights outper-

form the rest in the presence of structural breaks and heteroscedasticity. As the break

size becomes large, the average root mean squared forecast error associated with either

CV or Cp weights decreases monotonically, but CV’s error tends to decrease faster in

some cases. Additionally, the forecast combination puzzle does not apply in any of these

experiments for our CV weights.

3.5 Empirical Application

In this section we are going to apply our CV model averaging method and other

related methods to forecasting the quarterly GDP growth rate for the U.S. and Taiwan.
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We plot these two series separately in figure C.1. We consider the Taiwanese data23

because it has some interesting features compared with the U.S. data, for example, the

Taiwanese data seems to have a break in the mean around the early 1990s,24 and it

becomes more volatile towards the end of the sample. The U.S. data is obtained from

the Bureau of Economic Analysis.25 The data for Taiwan is from National Statistics.26

For the U.S. series, we can see that the growth rate becomes less volatile toward the

end of the sample. This pattern is the so called Great Moderation phenomenon, see Stock

(2004) and Stock and Watson (2003). On the prediction of U.S. GDP growth, Stock and

Watson argue that the forecasting relationship is time-varying and combination forecasts

reliably improve upon the AR benchmark. They claim:

From the perspective of forecasting methods, this evidence of sporadic predic-

tive content poses the challenge of developing methods that provide reliable

forecasts in the face of time-varying relations...the finding that averaging

individually unreliable forecasts produces a reliable combination forecast is

not readily explained by the standard theory of forecast combination, which

relies on information pooling in a stationary environment...fully articulated

statistical or economic models consistent with this observation could help to

produce combination forecasts with even lower MSFEs.

Motivated by these remarks, we will demonstrate that our theory based CV model av-

eraging method outperforms Mallows’ weight, Bayesian weight, and most importantly,

the equal weighting method in terms of smaller root mean squared forecast error.

23The data length for Taiwan is shorter than that of the U.S. because Taiwan officially starts its
post-war modernization in the early 1950s.

24This may be explained by the fact that Taiwan started drastic political reform around this period,
moving from an authoritarian central government to a modern democracy.

25http://www.bea.gov/
26National Statistics is the Taiwanese government agency commissioned with producing statistics to

help better understand Taiwan, its population, resources, economy, society, and culture. See http:

//eng.stat.gov.tw/

http://www.bea.gov/
http://eng.stat.gov.tw/
http://eng.stat.gov.tw/
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3.5.1 Forecast U.S. GDP Growth

Here we apply our method to forecasting the U.S. quarterly GDP growth rate27 out-

of-sample and compare its performance with others. We have quarterly data running

from 1960:Q1 to 2012:Q1, 209 observations in total. The variable we are interested

in predicting is the U.S. quarterly GDP growth rate. Predictors considered are the

quarterly change of U.S. 3-month treasury rate (∆SR), the quarterly change of U.S.

10-year treasury rate (∆LR) and the quarterly change of default premium (∆DP).28

Because we do not know the “true” model, or the “true” predictors to include, five

candidate models are considered. For each candidate, we are going to combine the break

version and stable version of the model using CV weights and other competing weights,

then forecast out-of-sample and calculate the root mean squared forecast errors. From

small to large the candidate models considered are:

∆GDPt = β0 + β1∆GDPt−1 + εt (3.13a)

∆GDPt = β0 + β1∆GDPt−1 + β2∆GDPt−2 + εt (3.13b)

∆GDPt = β0 + β1∆GDPt−1 + β2∆SRt−1 + εt (3.13c)

∆GDPt = β0 + β1∆GDPt−1 + β2∆SRt−1 + β3∆LRt−1 + εt (3.13d)

∆GDPt = β0 + β1∆GDPt−1 + β2∆SRt−1 + β3∆LRt−1 + β4∆DPt−1 + εt (3.13e)

Consistent with what is done in the simulation section, for each model we apply the

recursive window to forecast out-of-sample. To investigate the impact of the test sample

size, for each model, we vary the evaluation sample size from 20 to 50 with increments

of 5, then calculate the RMSFE for each weighting method for a given test sample size.

Forecast results from all models are reported in table C.4. For each model, the column

shows the OOS performance for a given weighting method. The rows report results for

27The data used for this application are from Bruce Hansen’s website:http://www.ssc.wisc.edu/

~bhansen/cbc/.
28The default premium is calculated by the difference between the AAA bond rate and BAA bond

rate.

http://www.ssc.wisc.edu/~bhansen/cbc/
http://www.ssc.wisc.edu/~bhansen/cbc/
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different evaluation sample sizes. For the entries in the table, following our Monte Carlo

simulation, we select the equal weighting method as the benchmark and normalize all

OOS forecasting performance around one. If the value of the relative RMSFE for a given

method is below one, it implies that the method under consideration outperforms the

benchmark.

We can see that in all five models approximating the DGP, CV outperforms SIC, Cp

and equal weights under recursive window across all evaluation sample sizes. Addition-

ally, CV is the only method exceeding the benchmark regardless of the test sample size

and the base predictive model choice. The forecast gains of CV relative to the benchmark

range from about 1% to 6% across evaluation sample sizes and models. As for Mallows’

weights, in four out of five models, their performance gets close to the benchmark as the

test sample size increases, so this may suggest that Mallows’ weights are more sensitive

to the test sample size compared with CV. Last, for the SIC weights, their performance is

almost identical to the benchmark, and is quite stable across all models and test sample

sizes, though in some cases SIC weights marginally outperform the benchmark.

3.5.2 Forecast Taiwan GDP Growth

For the Taiwanese series, it demonstrates two interesting features in the figure. First,

it looks like that the Taiwanese average growth rate has dropped toward the end of the

sample. This may be explained by the economic growth theory that during the early

period of modernization or industrialization, a country tends to experience high economic

growth rate. But as time goes, the growth rate approaches to the low equilibrium rate.

Second, it seems like that the series becomes more volatile toward the end of the sample

compared with the U.S. data. This phenomenon contrasts with many other developed

counties which exhibit the similar Great Moderation pattern shown in the U.S. data, for

example, Canada and Germany.

We have quarterly data running from 1962:Q1 to 2013:Q4, 208 observations in total.
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The variable we are interested in forecasting is the Taiwanese quarterly GDP growth

rate. Since we do not have any exogenous predictors available, we only consider two AR

predictive models of different order, namely, the AR(1) model and the AR(2) model,

and combine the break version and stable version of each model using various weighting

methods. Out-of-sample forecast results from these two models are reported in table C.5.

Again, we keep the general setting outlined in the previous application: For each model,

we generate a sequence of scaled RMSFE by varying the evaluation sample size P, from

20 to 50, with increments of 5; Equal weighting is the benchmark; All entries in the table

are RMSFE divided by that of the benchmark.

For the AR(1) model, we can see from table C.5 that all weighting methods perform

roughly the same as the benchmark, though CV leads the rest marginally. For the

AR(2) model, both CV and Cp outperform the benchmark, but CV leads Cp across all

the test sample sizes considered. Overall, both applications demonstrate the superior

performance of CV weights compared with related methods.

3.6 Conclusion

We are interested in answering a basic question of how to forecast a time series

variable of interest when there is uncertainty about parameter instability. Specifically,

which model should be selected for prediction: the break model or the stable one? If

the uncertainty is strong and we decide to combine these two predictive models, what is

the optimal rule in terms of some information criterion about assigning weights? Built

upon Hansen’s Mallows’ model averaging method, we propose using the cross-validation

criterion to combine predictive models.

In many empirical applications related to macroeconomic or financial time series,

researchers usually cannot avoid explicitly dealing with heteroscedasticity for analysis

and prediction, so assuming conditional homoscedasticity in the model averaging theory
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may seem restrictive. To adapt Hansen’s weights to the out-of-sample forecast setting,

we need to relax the conditional homoscedasticity assumption and adjust weights ac-

cordingly. In the literature of model selection, the cross-validation criterion is shown

to be robust to heteroscedasticity unlike other information criteria, such as AIC, BIC

and Mallows’, so it is natural to replace Cp with CV and then derive the new optimal

weights.

Researchers have found that in many applications, equally weighted forecasts outper-

form other complex combination methods. This so called forecast combination puzzle

has cast doubt on the use of complicated model averaging methods, so comparing a new

method with the equal weights method becomes necessary for validation. Both CV and

Cp weights are easy to compute and do not rely on weight estimation as in the Granger-

Ramanathan forecast combination. This feature should be appealing to practitioners and

professional forecasters because simplicity may help reduce the excess noise introduced

by applying complex weighting methods. This may help explain why our cross-validation

weights exceed equal weighting as shown in simulations and in empirical examples on

forecasting U.S. and Taiwan quarterly GDP growth rates out-of-sample.
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APPENDIX A. FORECASTING EQUITY PREMIUM

WITH STRUCTURAL BREAKS

TABLES AND FIGURES
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Table A.1 Estimation Results for Stable Predictive Models

R2 Intercept β

Historical Mean 0.0027

(1.743)

Dividend-yield 0.0027 0.0206 0.0053

(1.773) (1.556)

Dividend-payout 0.0005 0.0050 0.0033

(1.290) (0.642)

Dividend-price 0.0025 -0.0146 -0.0051

(-1.257) (-1.502)

Earnings-price 0.0043 -0.0157 -0.0068

(-1.650) (-1.959)

Stock Market Variance 0.080 0.0096 -3.1314

(5.717) (-8.830)

Cross Sectional Premium 0.0066 0.0021 1.5988

(1.253) (2.289)

Book-to-market 0.0043 0.0098 -0.0123

(2.486) (-1.958)

Net Equity Expansion 0.0020 0.0045 -0.1179

(2.187) (-1.330)

3-month Treasury Bill 0.0049 0.0068 -0.1038

(2.736) (-2.107)

Long term Yield 0.0025 0.0072 -0.0800

(2.120) (-1.487)

Term Spread 0.0035 -0.0008 0.2097

(-0.330) (1.776)

Default Premium 0.0002 0.0039 0.1190

(1.130) (0.390)

Inflation 0.0029 0.0043 -0.5339

(2.338) (-1.599)

Note: The stable model is yt+1 = ȳ + βxt + ut+1, where t = 1, ..., T .
yt+1 is the market excess returns, ȳ is the intercept, xt is the exoge-
nous predictor available at time t to forecast the next period returns
yt+1 and ut+1 is a disturbance term. The historical mean model is
yt+1 = ȳ + ut+1. Each predictive model is labeled with its predictor
except for the historical mean model. For each model, we report its
in-sample R2 statistic, intercept estimate and predictor coefficient
estimate β. Parentheses report the t statistic for each parameter es-
timate above. Monthly data rums from 1937:05 to 2011:12.
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Table A.2 Estimation Results for the Stock Market Variance Model with Three Breaks

R2 Intercept β

Segment 1: 1937:05 - 1956:02 0.073 0.015 -3.692

(3.602) (-4.189)

Segment 2: 1956:03 - 1974:08 0.215 0.013 -13.032

(4.308) (-7.766)

Segment 3: 1974:09 - 1985:10 0.121 -0.017 11.930

(-2.873) (4.263)

Segment 4: 1985:11 - 2011:12 0.172 0.013 -3.193

(5.052) (-8.033)

Note: For the stock market variance model with three breaks, we report
its in-sample R2 statistic, intercept estimate and predictor coefficient
estimate β for each regime. Parentheses report the t statistic for each
parameter estimate above.
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Window
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Figure A.8 Recursive window out-of-sample forecast comparison between the break
Model and stable model
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Figure A.9 Rolling window out-of-sample forecast comparison between the break Model
and stable model
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Table B.1 U.S. Market Equity Premium Out-of-Sample R2
OS Statistics for Combining

Methods

Cp DMSFE Equal SIC Break Stable
Monthly Data 10.484 10.441 10.406 10.406 10.635 10.143
Quarterly Data 6.171 6.008 5.835 5.826 6.214 5.071
Yearly Data 3.608 3.459 3.206 3.157 2.199 3.897

Note: R2
OS is the Campbell and Thompson (2008) out-of-sample R2 statistic, which

measures the percent reduction in mean squared forecast error (MSFE) for the com-
bination methods given in the first row of the table relative to the historical average
benchmark forecast. Cp: Mallows’ weights. DMSFE: discounted mean squared fore-
cast error weights with discount factor θ = 1. Equal: equal weights. SIC: Schwarz
Information Criterion Weights. Break: equal weights for the break version of all bi-
variate predictive models. Stable: equal weights for the stable version of all bivariate
predictive models. We apply the two-stage forecast combination procedure to the first
four columns, meaning that in the first stage, for each bivariate predictive model, we
use Cp, DMSFE, Equal or SIC weights to average its stable and break cases, then
we apply equal weights to all 14 break-adjusted models. For the last two columns,
we simply equally weight all 14 break or stable bivariate predictive models. Monthly
data: the estimation sample runs from 1927:01 to 1956:12, and the evaluation sam-
ple runs from 1957:01 to 2013:12. Quarterly data: the estimation sample runs from
1947:1 to 1964:4, and the evaluation sample runs from 1965:1 to 2013:4. Yearly data:
the estimation sample runs from 1927 to 1964, and the evaluation sample runs from
1965 to 2013.
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Figure B.1 Monthly Data Time Series Plots
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Figure B.2 Quarterly Data Time Series Plots
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Figure B.3 Annual Data Time Series Plots
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Figure B.4 Monthly Data Variable Correlation Matrix
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Figure B.5 Quarterly Data Variable Correlation Matrix
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Figure B.6 Annual Data Variable Correlation Matrix
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Figure B.7 Cumulative Difference in Squared Forecast Error (CDSFE): Individual
Model, Monthly Data
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Figure B.8 Cumulative Difference in Squared Forecast Error (CDSFE): Individual
Model, Quarterly Data
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Figure B.9 Cumulative Difference in Squared Forecast Error (CDSFE): Individual
Model, Annual Data
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Figure B.10 Monthly Data: Model Out-of-Sample Forecasts Correlation Matrix
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Figure B.11 Quarterly Data: Model Out-of-Sample Forecasts Correlation Matrix
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Figure B.12 Annual Data: Model Out-of-Sample Forecasts Correlation Matrix
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Figure B.13 Cumulative Difference in Squared Forecast Error (CDSFE): Combined
Model, Monthly Data
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Figure B.14 Cumulative Difference in Squared Forecast Error (CDSFE): Combined
Model, Quarterly Data
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Figure B.15 Cumulative Difference in Squared Forecast Error (CDSFE): Combined
Model, Annual Data
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APPENDIX C. OUT-OF-SAMPLE FORECAST MODEL

AVERAGING WITH PARAMETER INSTABILITY

Tables, Figures and Proofs
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Table C.1 Monte Carlo Simulation: Design I

P = 30 P = 50

Break Size Cp CV SIC Stable Break Cp CV SIC Stable Break
100 0.6312 0.6298 1.2987 1.6557 0.6297 0.6599 0.6585 1.2849 1.6220 0.6584
10 0.6644 0.6627 1.2563 1.6148 0.6627 0.6871 0.6854 1.2473 1.5874 0.6853
5 0.7085 0.7066 1.2063 1.5605 0.7065 0.7289 0.7271 1.2005 1.5335 0.7270
3 0.7658 0.7636 1.1517 1.4782 0.7636 0.7869 0.7850 1.1454 1.4489 0.7850
2 0.8330 0.8308 1.0974 1.3734 0.8308 0.8500 0.8483 1.0925 1.3471 0.8483

Notes: The DGP is yt = µ+ ρ1yt−1 + ρ2yt−2 +
∑5

i=1 θixi + et, et = vt
√
ht, ht = α0 +α1e

2
t−1 and the forecasting model

is yt = µ +
∑4

i=1 θixi + et. P is the evaluation sample size, total sample size is 200, break fraction relative to the
training sample is π = 0.3, OOS forecasts are generated by the recursive window, 5000 times replication. Equal weight
is chosen as the benchmark and the numbers in the table represent the RMSFE ratio between each individual method
and equal weight. Cp: Mallows’ weights. CV: cross-validation weights. SIC: Schwarz-Bayesian weights. Stable: model
without structural breaks. Break: model with a full structural break.

Table C.2 Monte Carlo Simulation: Design II

P = 30 P = 50

Break Size Cp CV SIC Stable Break Cp CV SIC Stable Break
100 0.4610 0.2586 1.0717 1.9477 0.2586 0.5706 0.3415 1.0649 1.8951 0.3415
10 0.7007 0.5681 1.0393 1.6830 0.5683 0.6945 0.5419 1.0392 1.6930 0.5421
5 0.8422 0.7700 1.0194 1.4212 0.7701 0.8699 0.7946 1.0191 1.3916 0.7948
3 0.8978 0.8541 1.0111 1.2809 0.8543 0.9135 0.8800 1.0126 1.2551 0.8803
2 0.9188 0.8778 1.0082 1.2352 0.8781 0.9417 0.9320 1.0074 1.1578 0.9323

Notes: The DGP is yt = µ+ ρ1yt−1 + ρ2yt−2 +
∑2

i=1 θixi + et, et ∼ N(0, y2t−1) and the forecasting model is yt = µ+∑2
i=1 θixi + et. P is the evaluation sample size, total sample size is 200, break fraction relative to the training sample

is π = 0.3, OOS forecasts are generated by the recursive window, 5000 times replication. Equal weight is chosen as
the benchmark and the numbers in the table represent the RMSFE ratio between each individual method and equal
weight. Cp: Mallows’ weights. CV: cross-validation weights. SIC: Schwarz-Bayesian weights. Stable: model without
structural breaks. Break: model with a full structural break.
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Table C.3 Monte Carlo Simulation: Design III

P = 30 P = 50

Break Size Cp CV SIC Stable Break Cp CV SIC Stable Break
100 0.9810 0.9759 1.0011 1.0839 0.9760 0.9825 0.9769 1.0011 1.0789 0.9770
10 0.9860 0.9789 1.0006 1.0716 0.9790 0.9880 0.9822 1.0006 1.0656 0.9823
5 0.9919 0.9850 1.0003 1.0583 0.9852 0.9933 0.9868 1.0003 1.0534 0.9870
3 0.9977 0.9903 1.0000 1.0455 0.9906 0.9975 0.9905 1.0001 1.0428 0.9908
2 1.0009 0.9940 0.9999 1.0347 0.9944 1.0013 0.9952 0.9999 1.0316 0.9958

Notes: The DGP is yt = µ + ρ1yt−1 + ρ2yt−2 + et, et ∼ N(0, σ2) t ∈ [1, τv] and et ∼ N(0, 14σ
2) t ∈ [τv + 1, R],

τv = 0.5R, the forecasting model is yt = µ + ρ1yt−1 + et. P is the evaluation sample size, total sample size is 200,
break fraction relative to the training sample is π = 0.3, OOS forecasts are generated by the recursive window, 5000
times replication. Equal weight is chosen as the benchmark and the numbers in the table represent the RMSFE ra-
tio between each individual method and equal weight. Cp: Mallows’ weights. CV: cross-validation weights. SIC:
Schwarz-Bayesian weights. Stable: model without structural breaks. Break: model with a full structural break.

Table C.4 U.S. Quarterly GDP Growth Rate Forecast Comparison

Model a Model b Model c Model d Model e

Cp CV SIC Cp CV SIC Cp CV SIC Cp CV SIC Cp CV SIC
P = 20 1.044 0.967 0.999 1.031 0.983 0.999 1.017 0.987 0.999 1.038 0.970 0.998 1.043 0.960 0.997
P = 25 1.038 0.968 0.999 1.021 0.984 0.999 1.036 0.976 0.999 1.038 0.969 0.998 1.017 0.967 0.998
P = 30 1.022 0.977 0.999 1.022 0.983 0.999 1.007 0.996 1.000 1.013 0.991 0.998 1.032 0.975 0.998
P = 35 1.020 0.980 1.000 1.036 0.996 0.999 1.022 0.983 0.999 1.024 0.983 0.999 1.034 0.973 0.998
P = 40 1.022 0.979 0.999 1.012 0.987 1.000 1.024 0.982 0.999 1.025 0.982 0.999 1.033 0.974 0.998
P = 45 1.024 0.978 1.000 1.014 0.986 1.000 1.025 0.982 0.999 1.026 0.981 0.999 1.037 0.974 0.998
P = 50 1.021 0.987 1.000 1.011 0.989 1.000 1.027 0.984 0.999 1.023 0.987 0.999 1.022 0.988 0.999

Notes: Quarterly data from 1960:1 to 2012:1. P is the evaluation sample size. Equal weight is chosen as the benchmark and the numbers in the
table represent the RMSFE ratio between each individual method and equal weight. Smaller number indicates better forecasting performance.
Cp: Mallows’ weights. CV: cross-validation weights. SIC: Schwarz-Bayesian weights.
Model a: AR(1)
Model b: AR(2)
Model c: AR(1) + SR
Model d: AR(1) + SR + LR
Model e: AR(1) + SR + LR + DP
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Table C.5 Taiwan Quarterly GDP Growth Rate Forecast Comparison

Model AR(1) Model AR(2)

Cp CV SIC Cp CV SIC
P = 20 0.991 0.947 0.999 0.968 0.944 1.000
P = 25 0.998 0.994 1.000 0.972 0.942 1.000
P = 30 0.998 0.995 1.000 0.973 0.943 1.000
P = 35 0.999 0.995 1.000 0.974 0.945 1.000
P = 40 0.998 0.993 1.000 0.976 0.948 1.000
P = 45 0.998 0.993 1.000 0.982 0.961 1.000
P = 50 0.997 0.996 1.000 0.984 0.962 1.000

Notes: Quarterly data from 1962:1 to 2013:4. P is the evalua-
tion sample size. Equal weight is chosen as the benchmark and
the numbers in the table represent the RMSFE ratio between
each individual method and equal weight. Smaller number indi-
cates better forecasting performance. Cp: Mallows’ weights. CV:
cross-validation weights. SIC: Schwarz-Bayesian weights.
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Figure C.1 U.S. and Taiwan Quarterly GDP Growth Rate
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Proof of Proposition 3.3.1. From the cross-validation criterion, for linear regression mod-

els we have the well-known result that

1

T

T∑
i=1

ẽt
2 =

1

T

T∑
i=1

êt
2

(1− ht)2

where ht = x′t(X
′X)−1xt is the leverage associated with observation t. Applying Taylor

expansion to ht around 0, we can expand the above equation as

1

T

T∑
i=1

ẽt
2 =

1

T

T∑
i=1

êt
2

(1− ht)2

≈ 1

T

T∑
i=1

êt
2 +

2

T

T∑
i=1

êt
2ht

= σ̂2 +
2

T

T∑
i=1

êt
2x′t(X

′X)−1xt

Under regularity conditions listed in Assumption 1, we have σ̂2 p→ σ2. For the penalty

term, 1
T

∑T
i=1 êt

2x′t(X
′X)−1xt

p→ E(e′Pe). Putting these two parts together, we can see

that CV is asymptotically equivalent to Mallows’ Cp under our assumptions except for

conditionally homoscedastic errors.

Proof of Corollary 3.3.1. Since CV is asymptotically equivalent to Mallows’ Cp, follow-

ing proof in Hansen (2009), write the sample CV criterion (ĈV(w)) for the weighted

model as a function of the break model weight w,

ĈV(w) = (wê+ (1− w)ẽ)′(wê+ (1− w)ẽ) + 2(T − 2k)−1(k + wp̄)ê′ê

where p̄ proposed by Hansen is used to approximate the infeasible expected value of the

population penalty term. The sample optimal CV weight ŵ is the value in [0, 1] that

minimizes ĈV(w), so

ŵ =
(T − 2k)(

∑T
t=1 ẽ

2
t −

∑T
t=1 ê

2
t )− p̄

∑T
t=1 ê

2
t

(T − 2k)(
∑T

t=1 ẽ
2
t −

∑T
t=1 ê

2
t )

if (T − 2k)(
∑T

t=1 ẽ
2
t −

∑T
t=1 ê

2
t )(
∑T

t=1 ê
2
t )
−1 ≥ p̄ while ŵ = 0 otherwise.
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Proof of Proposition 3.3.2. The proof of this proposition is adapted from Hansen (2009).

By projection arguments, P (m) = P + P ∗(m), where

P = X(X ′X)−1X ′,

P ∗(m) = X∗(m)(X∗(m)′X∗(m))−1X∗(m)′,

X∗(m) = X(m)−PX(m) = X(m)−X(X ′X)−1X ′X(m) = X(m)−X(X ′X)−1X(m)′X(m),

and X(m) is the matrix of stacked regressors xt(t < m). The cross-validation penalty

term can be expanded as:

e′P (m)e = e′Pe+ e′P ∗(m)e

= e′Pe+ e′X∗(m)(X∗(m)′X∗(m))−1X∗(m)′e

We start by showing the asymptotic distribution of the second term on the right-hand-

side of the above equation, e′P ∗(m)e = e′X∗(m)(X∗(m)′X∗(m))−1X∗(m)′e. For this

term, X∗(m)′X∗(m), we have

X∗(m)′X∗(m) = (X(m)−X(X ′X)−1X(m)′X(m))′(X(m)−X(X ′X)−1X(m)′X(m))

= X(m)′X(m)−X(m)′X(X ′X)−1X(m)′X(m)

−X(m)′X(m)(X ′X)−1X ′X(m)

+X(m)′X(m)(X ′X)−1X(m)′X(m)

= X(m)′X(m)−X(m)′X(X ′X)−1X(m)′X(m)

From our assumptions and m
T
→ π, by laws of large numbers, we have

1

T
X(m)′X(m)

P→ πQ

and

1

T
X(m)′X(X ′X)−1X(m)′X(m)

P→ πQQ−1πQ

so

1

T
X∗(m)′X∗(m)

P→ π(1− π)Q
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By the continuous mapping theorem we have

(
1

T
X∗(m)′X∗(m))−1 P→ (π(1− π))−1Q−1

For this term, X∗(m)′e = (X(m)−X(X ′X)−1X(m)′X(m))′e, we can show

(X(m)−X(X ′X)−1X(m)′X(m))′e = X(m)′e−X(m)′X(m)(X ′X)−1X ′e

=

[Tπ]∑
t=1

xtet −
[Tπ]∑
t=1

xtx
′
t

(
T∑
t=1

xtx
′
t

)−1( T∑
t=1

xtet

)
Next, applying laws of large numbers and the mixing functional central limit theorem,

we have

1√
T

[Tπ]∑
t=1

xtet ⇒ W (π)

1

T

[Tπ]∑
t=1

xtx
′
t
P→ πQ

(
1

T

T∑
t=1

xtx
′
t

)−1

P→ Q−1

1√
T

T∑
t=1

xtet ⇒ W (1)

whereW (1) is a Brownian motion vector with covariance matrix Σ ≡ lim
n→∞

VAR( 1√
T

∑T
t=1Xiei),

and W (π) is a Brownian vector indexed at time π.

Putting together the results obtained above, we have

1√
T
X∗(m)′e⇒ W (π)− πW (1)

Then we have

1

T
e′P ∗(m)e⇒ 1

π(1− π)
(W (π)− πW (1))′Q−1(W (π)− πW (1)) =

B(π)′B(π)

π(1− π)
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where B(π) is a Brownian bridge. Since the break date m needs to be estimated, com-

bined with Andrews’ Andrews (1993) theorem 4, we have 1
T
e′P ∗(m̂)e⇒ J0(ξδ).

For the first component in the penalty term, e′Pe, we have

e′Pe = (
1√
T

T∑
t=1

xtet)
′(

1

T

T∑
t=1

xtx
′
t)
−1(

1√
T

T∑
t=1

xtet)

Again, applying laws of large numbers and central limit theorem,

1√
T

T∑
t=1

xtet ⇒ W (1)

1

T

T∑
t=1

xtx
′
t

p→ Q

so

e′Pe
p→ Ψ′Q−1Ψ

where Ψ ∼ N(0,Σ) .

Σ is symmetric and positive definite, Q−1 is of the same rank of Σ, applying results of

the distribution of quadratic forms (see section 5.4 of Ravishanker and Dipak (2001)),

we have

e′Pe
d→

k∑
j=1

λjχ
2(1)

Collecting all the results shown above, we have

e′P (m̂)e
d→

k∑
j=1

λjχ
2(1) + J0(ξδ)

Proof of Corollary 3.3.2. From proposition 3.3.2, take expectation of the CV penalty

term,

E(e′P (m̂)e) = E(
k∑
j=1

λjχ
2(1)) + E(J0(ξδ))
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We have E(
∑k

j=1 λjχ
2(1)) =

∑k
j=1 λj. For E(J0(ξδ)), because it depends on the true

data generating process which is unknown in practice, following Hansen’s approach, we

can approximate the value of E(J0(ξδ)) by averaging two extreme cases, so E(J0(ξδ)) ≈
1
2
(tr(Q̂−1Σ̂) + 2p̄− k) ≡ p̄∗. Then by the same procedure in the proof of corollary 3.3.1,

the sample CV criterion is

ĈV(w) = (wê+ (1− w)ẽ)′(wê+ (1− w)ẽ) + 2(tr(Q̂−1Σ̂) + wp̄∗)

The sample optimal CV weight ŵ is the value in [0, 1] that minimizes ĈV(w), so

ŵ = 1−
tr
(
Q̂−1Σ̂

)
+ 2p̄− k

2
(∑T

t=1 ẽ
2
t −

∑T
t=1 ê

2
t

)
if (
∑T

t=1 ẽ
2
t −

∑T
t=1 ê

2
t ) ≥ p̄∗ while ŵ = 0 otherwise.
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